| 研究生: |
廖卿妃 Ching-Fei Liao |
|---|---|
| 論文名稱: |
車籠埔斷層斷層岩之變形作用與黏土礦物分析 Analysis of fault rock deformation and clay mineralsfrom cores of Chelungpu fault zone |
| 指導教授: |
洪日豪
Jih-Hao Hung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 車籠埔斷層 、變形作用 、黏土礦物 、斷層泥 、斷層岩 、斷層滑動帶 、X光繞射分析 |
| 外文關鍵詞: | X-ray, Clay minerals, fault rock, Chelungpu fault, slip zone, fault gouge, deformation |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
論文內容提要:
1999年9月21日凌晨,台灣中部發生規模7.3級之世界級災害性地震,造成地表長達80公里的破裂。集集地震雖然造成無數的傷亡損失,卻也提供了我們瞭解斷層行為與性質的珍貴機會。
本研究分為兩個主要目的:一是觀察車籠埔斷層之斷層破裂帶,以瞭解這次地震斷層活動對地表淺部岩層所造成的破裂構造特性與斷層泥的性質;另一是比較斷層泥與圍岩之黏土礦物成份,討論在這次斷層活動的過程中,斷層泥中之黏土礦物是否受到應變作用影響而產生化學變化。
李錫堤(2000)沿車籠埔斷層地表破裂帶進行HQ連續取樣鑽探工作,其中鑽孔編號BH-2位於東陽橋附近,總鑽井深度為110公尺,並於深度50.5公尺處發現一寬約2~3公分的黑色斷層泥,依據地表破裂傾角及裂隙密度分析,判斷此處斷層泥為921地震車籠埔斷層滑動帶,斷層面傾角約50度至60度之間。2001年3月「車籠埔斷層深部鑽心及孔內試驗計畫」由日本出資,聯合台灣、美國及日本專家學者進行研究。鑽孔位置選在台中縣豐原市東陽里(鑽孔編號BH-1、BH-1A)及南投縣千秋里之千秋國小(鑽孔編號CLF-2),其中BH-1與BH-1A即為本研究岩心採樣之對象。
本研究之研究方法為:(1) 將BH-2、BH-1及BH-1A所有岩心拍照紀錄,以便日後進行細部構造描繪。(2) 觀察岩心之斷層岩變形組構,進一步將斷層角礫岩依破裂程度分類並描述,以瞭解地層受到斷層作用的破壞程度,並依此找出斷層滑移帶的可能位置。(3) 製作岩石薄片,以觀察斷層破裂帶的微構造及斷層泥之微組構。(4) 進行X- ray 繞射分析,以瞭解斷層帶與圍岩之礦物種類及黏土礦物含量差異。(5) 測量伊利石結晶度,以瞭解黏土礦物是否受到斷層作用影響而產生變質作用。(6) X光螢光分析(全岩分析),以瞭解斷層泥與圍岩中各元素之氧化物所含重量百分比。
研究成果:(1) 車籠埔斷層之斷層破裂帶大致沿著岩性軟弱的岩層或是岩性較不均質的軟弱岩互層發育,加上地下水的潤滑作用,因此容易產生滑動量大、破裂範圍大且構造複雜的斷層破裂帶。(2) 深度214~225公尺的斷層破裂帶之剪切應變作用集中在一狹窄滑動帶中,斷層滑動帶有強烈的半塑性剪切變形特徵(S-C組構之葉理狀構造)顯示,斷層核心應變程度較高,而斷層破裂帶範圍較小的現象。(3) 深度283~330公尺的斷層破裂帶寬度較大,斷層泥僅有顆粒磨細的作用並無葉理狀構造出現,顯示斷層核心應變程度較低,而斷層破裂帶範圍較大的現象。(4) 斷層泥組構已顯示黏土礦物與細礫石英會受到強烈剪應力作用影響而反應出定向的葉理狀構造。(5) 蒙脫石受到斷層作用產生的溫度影響而轉變為蒙脫石/伊利石混層礦物或伊利石。根據斷層帶溫度估計,過程中所排出的水很可能迅速氣化而逸散入孔隙中。(6) 斷層泥之最小顆粒可達到10~25nm,而一般頁岩(圍岩)之顆粒均在一百~數百nm以上,足見岩體本身的最小顆粒亦會受到斷層應變作用影響而減小體積為原來的千分之一大小。(7) 所有斷層泥的化學成分都十分相近,而圍岩則隨著礦物組成而異。
Abstract
Surface rupture of the Chelungpu thrust fault during the September 21, 1999, Chi-Chi earthquake extended 80-km long. Core analysis from a 450m-long inclined hole drilled through the fault zone at northern end of the Chelungpu fault is the main research in this study. Studies of deformation structure of fault rocks and microstructures of fault gouge from cores help to characterize shear localization and deformational behavior of fault zone. In addition, clay mineral analysis is performed to understand the relationship between clay composition and strain within slip zones.
We have identified two fault zones on which slip occurred during Chi-Chi earthquake: 1) depth 214~225m, few fractures in the core and fault gouge(223.45m) with S-C fabric show that no obvious damage zone is grown in the small fault zone and shear strain concentrates a narrow slip zone; 2) depth 283~330m, many large fractures filled with rich mud and fragments in the wide fault zone, but fault gouge(329.65m) with random texture show that damage zone and fault core are grown completely.
Results from X-ray diffraction analysis show that smectite and siderite coexist in host rock but not in the fault gouge. Smectite dehydration and transition to mixed-layered illite-smectite are caused by elevated temperature owing to fault slip during Chi-Chi earthquake. Temperature within slip zone can be constrained by the decompose temperature between siderite and calcite.
參考文獻
何春蓀 編著(1994)台灣地質概論台灣地質圖說明書。經濟部中央地質調查所,第71–106頁。
林啟文、張徽正、盧詩丁、石同生、黃文正編著(2000)台灣活動斷層概論(第二版)五十萬分之一台灣活動斷層分佈說明書。經濟部中央地質調查所特刊,第十三號,第56–62頁。
黃文正、陳致言、劉思妤、林燕慧、林啟文、張徽正(2000)台灣中部大甲溪至頭汴溪九二一集集地震地表變形模式。經濟部中央地質調查所特刊-九二一集集大地震專輯,第十二號,第63–88頁。
陳勉銘、何信昌(2000)九二一集集地震斷層與車籠埔斷層之關連。經濟部中央地質調查所特刊-九二一集集大地震專輯,第十二號,第113–138頁。
莊恭周 (1982)苗栗出磺坑構造中新統之黏土礦物分析。探採研究彙報,中國石油股份有限公司探採研究中心, 第5期,第91-99頁。
陳培源 (1973) 台灣黏土礦物與黏土礦物區域。地質:中國地質學會五十年紀念創刊號,中國地質學會及經濟部聯合礦業研究所,第一卷,第一期,第41–52。
薛朝民、威廉詹士(1985) 台灣西部新第三紀地層中有機物質及黏土礦物的成岩作用。台灣石油地質,中國石油學會,第21號,第129–172頁。
孟威廉、柯慕愷、史魯柏(1985) 來源地區與成岩作用對台灣西南部中新世至更新世沈積物中黏土含量與結晶度之影響。台灣石油地質,中國石油學會,第21號,第173–186頁。
李錫堤 (2001) 車籠埔斷層槽溝探查工作成果報告。國立中央大學應用地質研究所。
李錫堤 (2001)車籠埔斷層HQ連續取樣工程地質調查鑽探工作報告。國立中央大學應用地質研究所。
李錫堤、鄭錦桐、廖啟雯、廖卿妃(2001)車籠埔斷層的淺井鑽探成果,『地震及活斷層研究』重大科技計畫八十九年度期中成果研討會摘要集,第136-138頁。
林銘朗、鄭富書、翁作新、洪如江(2000) 斷層泥力學性質研究。交通部台灣區國道新建工程局。
吳富洵(1992) 新店斷層及其在隧道工程上之影響。國立中央大學應用地質研究所論文。
許麗芬(1992) 斷層泥之微組構分析。國立中央大學應用地質研究所論文。
黃秉榮(2003)921斷層泥中奈米礦物微粒的探尋與滑動時地層溫度的標定。國立中央大學物理研究所論文。
富國技術工程股份有限公司(2002) 台中縣豐原市福陽國小預定校地地質調查期中報告。
經濟部中央地質調查所(2001) 八十八下半年及八十九年度中央地質調查所年報,第47–49頁。
中央地質調查所 (2000) 九二一地震地質調查報告。
中央地質調查所(2000) 921集集地震車籠埔斷層沿線地表破裂位置圖。
趙杏媛、張有瑜 編著(1990) 黏土礦物與黏土礦物分析。海洋出版社,北京。
劉瑞珣、李曉軍(1989) 活斷層測年樣品的顯微構造分析。北京大學地質系,岩石圈地質學,第98–101頁。
Lin, A. (1996a) Injection veins of crushing-originated pseudotachylyte and fault gouge formed during seismic faulting. Eng. Geol. 43, 213–224.
Lin, A. (1996b) Microstructures of fault rocks in the Nojima fault and their implications for the tectonic history (in Japanese with English abstract) Struct. Geol., J. Tectonic Res. Group Jpn. 41, 17–30.
Lin, A. (1999) S–C cataclasite in granitic rock. Tectonophysics, Vol. 304 , 257–273.
Lin, A. (2001) Co-seismic displacements, folding and shortening structures along the Chelungpu surface rupture zone occurred during the 1999Chi-Chi (Taiwan) earthquake. Tectonophysics, Vol. 330, 225–244.
Snoke, W. A., Tullis, J. and Todd, V. R. (1998) Fault-related rocks. Princeton University Press.
Caine, J. S., Evans, J. P. and Forster, C. B. (1996) Fault zone architecture and permeability structure. Struct. geology, Vol. 24, No. 11, 0091–7613.
Chester, F. M., Friedman, M. and Loggan, J. M. (1985) Foliated cataclasites. Tectonophysics, Vol. 111, 134–146.
Berthe, D., Choukroune, P. and Jegouzo, P. (1979) Orthogneiss, mylonite and non-coaxial deformation of granites: The example of the South Armowican shear zone. J. Struct. Geol., Vol. 11, 31–42.
Suh, C. E. and Dada, S. S. (1997) Fault rocks and differential reactivity of minerals in Kanawa Violaine uraniferous vine, NE Nigeria. J. Struct. Geol., Vol. 19, No. 8, 1037–1044.
Demian, M. S. and Chris, M. (2002) Comparison of Smectite and Illite Frictional Properties: Application to the Updip Limit of the Seismogenic Zone Along Subduction Megathrusts. Submitted to EPSL July 17 2002.
Essene, E. J. and Peacor, D. R. (1997) Illite and smectite; metastable, stable or unstable? Further discussion and correction; reply. Clays and Clay Minerals, Vol.45, No. 1, 116–122.
Evans, J.P. and Chester, F.M. ( 1995) Fluid-rock interaction in faults of the San Andreas system. Journal of Geophysical Research, Vol. 100, 13007–13020.
Freed, R. L. and Peacor, D. R. (1989) Geopressured shale and sealing effect of smectite to illite transition. AAPG Bulletin, Vol. 73, No.10, 1223–1232.
Freed, R. L. and Peacor, D. R. (1992) Diagenesis and the formation of authigenic illite-rich I/S crystals in Gulf Coast shales; TEM study of clay separates. Journal of Sedimentary petrology. Vol. 62, No. 2, 220–234.
Heermance, R. , Shiton, Z. K. and Evans, J. P. (2001) Structural controls and the nature of slip distribution for earthquake propagation in the 1999 rupture of the noethern end of the Chelungpu fault, Taiwan. Proceeding of ICDP workshop on Drilling the Chelungpu fault, Taiwan: Investigating the physics of faulting for a recent large earthquake. 24–29.
Higgins, M. W. (1971) Cataclastic rock, U. S. G. S. prof. pater 687, 1–97.
Hidemi, T., Wang, C. Y. , Chen, W. M. , Arito S., Kotaro U., Hisao I. and Masataka, A. (2001) Initial Science Report of Shallow Drilling Penetrating into the Chelungpu Fault Zone, Taiwan. TAO, Vol. 13, No. 3, 227–251.
Holger, L., Victor, A. D., Boris, A. S., Alfred, L. S., Per, W. and Lidia, G. D. (2000) Illite-smectite structural changes during metamorphism in black Cambrian Alum shales from the Baltic area. American Mineralogist, Vol. 85, 1223–1238.
Hsueh, C. M. and Johns, W. D. (1985) Diagenesis of organic materials and clay minerals in the Neogene sediments of western Taiwan. Petroleum Geology of Taiwan, No.21, 129-171.
Huang, S. T., Wu, J. C. , Hung J. H. and Tanaka, H. (2002) Studies of Sedimentary Facies, Stratigraphy, andDeformation Structures of the Chelungpu Fault Zone on Coresfrom Drilled Wells in Fengyuan and Nantou, Central Taiwan. TAO, Vol. 13, No. 3, 253-278.
Jiang, W. T. and Peacor, D. R. (1990) Transmission and analytical electron microscopic study of mixed-layer illite/smactite formed as apparent replacement product of diagenetic illite. Clays and Clay Minerals, Vol. 38, No.5, 449–468.
Johns, W. D., Grim, R. E. and Bradley, W. F. (1954) Quantitative estimations of clay minerals by diffraction methods. Journal of Sedimentary Petrology, Vol.24, No.5, 449–468.
Johns, W. D. and Shimoyama, A. (1972) Clay minerals and petroleum-forming reaction during burial and diagenesis. A. A. P. G. Bull., Vol.56, 2160–2167.
Klima, K., Riedmvller, G. and Stattegger, K. (1988) Statistical analysis of clay mineral assemblages in fault gouge. Clays and Clay Minerals, Vol. 36, No. 3, 277–283.
Lee, J. H., Ahn, J. H. and Peacor, D. R.. (1985) Textures in layered silicates; progressive changes throughes diagenesis and low-temperature metamorphism. Journal of sedimentary petrology. Vol. 55, No.4, 532–540.
Li, G., Peacor, D. R. and Coombs, D. S. (1997) Transformation of smectite to illite in bentonite and associated from KaKa point, New Zealand; constrast in rate and mechanism. Clays and Clay Minerals, Vol. 45, No. 1, 54–67.
Logan, J. M., Friedman, M., Higgs, N., Dengo, C. and Shimamoto, T. (1979) .Experimental studies of simulated fault gouge and their application to studies of natural fault zone. Proceedings of Conference VIII; Analysis of actual fault zones in bedrock. Open-File Report - U. S. Geological Survey , 305–343.
Peter, V. and Pluijm, B. A. (1999) Clay gouge. J. Struct. Geol., Vol. 21, 1039–1048.
Roland, P. and Ola, K. (1996) Physico/chemical stability of smectite clays. Engineering Geology. Vol. 41, 73–85.
Rutter, E. H., Maddock, R. H., Hall, S. H. and White, S. H.(1986) Comparative microstructures of natural and experimentally produced clay bearing fault gouge, pure app1. Geophysics, Vol. 24, 3–30.
Scholz, C. H. (1990) The mechanics of earthquakes and faulting. Cambridge University Press, New York. 115–132.
Schulz, S. E. and Evans, J. P. (1998) Spatial variability in microscopic deformation and composition of the Punchbowl fault, southern California: implications for mechanisms, fluid-rock interaction, and fault morphology. Tectonophysics, Vol. 295, 223–244.
Sibson, R. H. (1977) Fault fock and Fault mechanisms. J. Geol. Soc. London 133, 191–213.
Sibson, R. H. (1983) Continental fault structure and the shallow earthquake source. J. Geol. Soc. London 140, 741–767.
Sibson, R. H. (1996) Structural permeability of fluid-driven fault-fracture meshes. J. Struct. Geol., Vol.8, No.18, 1031–1042.
Skempton, A. W. (1966) Some observation on tectonic shear zones. Proc. 1st Cong. Int. Soc. Rock Mech., Lisbon, Vol.1, 329–335.
Wang, C. Y., Lee, C. L. and Yen, H. Y. (2002) Mapping the Northern Portion of the Chelungpu Fault, Taiwan by Shallow Reflection Seismics Geoph. Res. Letter , Vol. 29, No. 6, 951–954.
Wang, C. Y., Li, C. L., Su, F. C., Leu M. T., Wu M. S., Lai S. H. and Chern, C. C. (2002) Structural Mapping of the 1999 Chi-Chi Earthquake Fault, Taiwan by Seismic Reflection Methods. TAO, Vol. 13, No. 3, 211–226.
Wintsch, R. P., Christoffersen, R. and Kronenberg, A. K. (1995) Fluid-rock reaction weakening of fault zones. Journal of Geophysical Research, Vol.100, No.B7, 13021–13032.
Yau, Y. C., Peacor, D. R., Beane, R. E. and Essene, E. J. (2001) Microstructures, Formation Mechanisms, and Depth-Zoning of Phyllosilicates in Geothermally Altered Shales, Salton Sea, California. Clays and Clay Minerals, Vol. 36, No. 1, 1–10.