跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林昭弘
Chao Hung
論文名稱: 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件
Integrated Periodically and Aperiodically Poled Lithium Niobate (PPLN/APLN) Photonics and Laser Devices
指導教授: 張正陽
Jenq Yang Chang
陳彥宏
Yen Hung Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 97
語文別: 英文
論文頁數: 87
中文關鍵詞: 準相位匹配濾波器極化模態轉換器光參數振盪器鈮酸鋰
外文關鍵詞: PPLN, APLN, QPM, filter, polarization-mode converter, OPO
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在許多光電和雷射系統應用中需要使用到緊緻、多功能與高效率的光學元件。準相位匹配材料中獨特的積體式電光效應加上本身所具備的高效率非線性頻率轉換能力可用來開發許多引人注目的單塊晶多功能元件。延續過往的研究成果,在本論文中研究與論證了幾個在週期式與非週期式極性反轉鈮酸鋰(PPLN/APLN)中實現的多功能積體式光電與雷射元件。它們都利用準相位匹配晶體中可工程化的鐵電結構用以最佳化並同時實現前述之電光與非線性多功能光電與雷射系統。這些元件有極大的潛力應用在光通訊、光儲存、生醫、顯示技術與遙測等用途上。
    於第一章,將會簡介研究動機與背景。於第二章,將會說明電光式準相位匹配之理論與工作原理。於第三章,將會詳細論述利用一塊釹鎂摻雜週期式極性反轉鈮酸鋰(Nd:MgO:PPLN)晶體實現一波長為 1.085 μm之雷射泵激電光式內部Q調制雷射系統之設計、建造與實驗論證之方法與流程。於第四章,首次實驗論證利用一APLN晶體實現主動式窄帶多波長濾波器之設計大綱將會被提出。於第五章,將會論證與分析一新穎的電光式Q調制腔內二倍頻(SHG)釹釩酸釔雷射,它使用了一塊經過優化設計之單一光柵結構APLN晶體,可同時實現一個雷射Q開關與一個二倍頻產生器。於第六章,將會提出建立於單塊PPLN的一個增益被提高與頻譜被窄化的光參數振盪器(OPO),其整合了一個光參數產生器與兩個電光式偏極化模態轉換器。文中也會論證其獨特的OPO信號頻譜處理能力。此研究工作的總結與未來展望最後會在第七章與第八章分別被提出。
    這些成功的論證無疑地是發展非線性積體光學多項實質應用的重大進展。據此進展而研發的數個先進非線性積體光電與雷射元件正持續研究中。


    Compact, multi-function yet efficient optical devices are in great demand in many photonics and laser systems and applications. The ingenious integration of the unique electro-optic (EO) effects of a quasi-phase-matching (QPM) material with its capability of performing efficient nonlinear frequency conversion has led to the development of many attractive monolithic multi-function devices. To continue and extend these efforts and achievements, several advanced integrated photonics and laser devices of capable of performing multiple optical functions based on periodically and aperiodically poled lithium niobate (PPLN/APLN) devices were studied and demonstrated in this dissertation work. They were realized upon the idea of manipulation of the engineerable domain structure of a QPM crystal to optimize performing the prescribed EO and nonlinear-optic (NLO) processes simultaneously to achieve the multi-function operation in photonics and laser systems. These devices are of potential for applications in optical communications, optical storages, biomedicine, displays, remote sensing, etc.
    In chapter 1, the motivation and background introduction of this study will be given, while in chapter 2, the theory and working principles of EO QPM devices will be introduced. In chapter 3, the design, construction, and experimental demonstration of a laser-diode-pumped, electro-optically internal-Q-switched laser system radiating at 1.085 μm fabricated using a periodically poled Nd:MgO:LiNbO3 (Nd:MgO:PPLN) crystal will be detailed. In chapter 4, a design scheme for and the first experimental demonstration of active narrowband multi-wavelength filters based on APLN crystal will be presented. In chapter 5, a novel electro-optically Q-switched intracavity second-harmonic generation (SHG) Nd:YVO4 laser by using a single-grating-structure APLN crystal optimized for simultaneously performing a laser Q-switch and a second-harmonic generator will be revealed and characterized. In chapter 6, a gain-enhanced and spectral-narrowed optical parametric oscillator based on a monolithic PPLN integrating an optical parametric generator with two electro-optically active polarization-mode converters will be reported. Unique spectral manipulation of the OPO signal will also be demonstrated. The summary and outlook of this work will finally be given in chapters 7 and 8, respectively.
    The success of these demonstrations will certainly be a significant step in advancing the nonlinear integrated optics essential for various applications. The study and development of several derived and advanced nonlinear integrated photonics and laser devices are under way.

    Abstract 1 中文摘要 3 Acknowledgement 4 List of Figures 6 Chapter 1 Introduction 9 Chapter 2 Principles of EO PPLN and Its Properties 17 Chapter 3 EO PPLN as An Intracavity Q-switch for Laser 29 Introduction 29 Q-switch theory 30 Laser Design 34 Laser Performance 40 Summary 43 Chapter 4 EO Aperiodically Poled Lithium Niobate Devices 44 Introduction 44 Experimental demonstration and discussion 49 Conclusion 54 Chapter 5 APLN Q-switched and Frequency-doubled Laser 55 Introduction 55 Design 56 Fabrication 59 Experiment 60 Summary 63 Chapter 6 Gain-enhanced and spectral-narrowed optical parametric oscillator using PPLN electro-optic polarization-mode converters 64 Device design and working principle 66 Experiments 68 Conclusion 71 Chapter 7 Summary and Conclusion 73 Chapter 8 Outlook 76 Reference 78

    1.Yan-Qing Lu, Zhi-Liang Wan, Quan Wang, Yuan-Xin Xi, and Nai-Ben Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719 (2000). doi: 10.1063/1.1329325
    2.L. D. Shearer, M. Leduc, and J. Zachorowski, "CW laser oscillations and tuning characteristics of neodymium-doped lithium niobate crystals," IEEE J. Quantum Electron. 23, 1996-1998 (1987).
    3.Yiming Zhu, Xianfeng Chen, Jianhong Shi, Yuping Chen, Yuxin Xia, and Yingli Chen, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Comm. 228, 139-143 (2003). doi: 10.1016/j.optcom.2003.09.081
    4.Xianfeng Chen, Jianhong Shi, Yuping Chen, Yiming Zhu, Yuxing Xia, and Yingli Chen, "Electro-optic Solc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003). doi: 10.1364/OL.28.002115
    5.Y. H. Chen and Y. C. Huang, "Actively Q-switched Nd:YVO4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q-switch," Opt. Lett. 28, 1460-1462 (2003). doi: 10.1364/OL.28.001460
    6.D. A. Pinnow, R. L. Abrams, J. F. Lotspeich, and D. Henderson, "An electro-optic tunable filter," Appl. Phys. Lett. 34, 391-393 (1979). doi: 10.1063/1.90801
    7.Y. H. Chen, Y. Y. Lin, C. H. Chen, and Y. C. Huang, "Monolithic quasi-phase-matched nonlinear crystal for simultaneous laser Q switching and parametric oscillation in a Nd:YVO4 laser," Opt. Lett. 30, 1045-1047 (2005). doi:10.1364/OL.30.001045
    8.J. Yarborough, J. Falk, and E. Ammann, "Repetitively pulsed internal optical parametric oscillation -- Theory and experiment," IEEE J. Quantum Electron. 7, 307-307 (1971).
    9.J. Falk, J. Yarborough, and E. Ammann, "Internal optical parametric oscillation," IEEE J. Quantum Electron. 7, 359-369 (1971).
    10.Y. H. Chen , Y. C. Huang , Y. Y. Lin , and Y. F. Chen, "Intracavity PPLN crystals for ultra-low-voltage laser Q-switching and high-efficiency wavelength," Appl. Phys. B 80, 889-896 (2005). doi: 10.1007/s00340-005-1799-0
    11.Xi Gu, Xianfeng Chen, Yuping Chen, Xianglong Zeng, Yuxing Xia, and Yingli Chen, "Narrowband multiple wavelengths filter in aperiodic optical superlattice," Opt. Comm. 237, 53-58 (2004). doi: 10.1016/j.optcom.2004.03.058
    12.Shi-ning Zhu, Yong-yuan Zhu, and Nai-ben Ming, "Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice," Science 278, 843-846 (1997). doi: 10.1126/science.278.5339.843
    13.M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, "Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides," Opt. Lett. 24, 1157-1159 (1999). doi: 10.1364/OL.24.001157
    14.Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, and M. H. Chou, "Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate," Opt. Lett. 27, 2191-2193 (2002). doi: 10.1364/OL.27.002191
    15.Xianfeng Chen, Fei Wu, Xianglong Zeng, Yuping Chen, Yuxing Xia, and Yingli Chen, "Multiple quasi-phase-matching in a nonperiodic domain-inverted optical superlattice," Phys. Rev. A 69, 013818 (2004). doi: 10.1103/PhysRevA.69.013818
    16.C. R. Fernandez-Pousa, and J. Capmany, "Dammann grating design of domain-engineered lithium niobate for equalized wavelength conversion grids," IEEE Photon. Technol. Lett. 17, 2005 1037-1039 (2005). doi: 10.1109/LPT.2005.845775
    17.L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, "Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3," Opt. Lett. 20, 52-54 (1995). doi: 10.1364/OL.20.000052
    18.L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102-2116 (1995). doi: 10.1364/JOSAB.12.002102
    19.L. E. Myers and W. R. Bosenberg, "Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators," IEEE J. Quantum Electron. 33, 1663-1672 (1997). doi: 10.1109/3.631262
    20.P. E. Powers, T. J. Kulp, and S. E. Bisson, "Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design," Opt. Lett. 23, 159-161 (1998). doi: 10.1364/OL.23.000159
    21.J. Raffy, T. Debuisschert, and J. -P. Pocholle, "Widely tunable optical parametric oscillator with electrical wavelength control," Opt. Lett. 22, 1589-1591 (1997). doi: 10.1364/OL.22.001589
    22.C. Yu and A. H. Kung, "Grazing-incidence periodically poled LiNbO3 optical parametric oscillator," J. Opt. Soc. Am. B 16, 2233-2238 (1999). doi: 10.1364/JOSAB.16.002233
    23.Amnon Yariv and Pochi Yeh, "Optical Waves in Crystals," ISBN:0-471-09142-1
    24.A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. 9, 919-933 (1973).
    25.A. Cordova-Plaza, T. Y. Fan, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, "Nd:MgO:LiNbO3 continuous- wave laser pumped by a laser diode," Opt. Lett. 13, 209-211 (1988). doi: 10.1364/OL.13.000209
    26.J. J. Zayhowski and C. Dill III, "Coupled-cavity electro-optically Q-switched Nd:YVO4 microchip lasers," Opt. Lett. 20, 716-718 (1995). doi: 10.1364/OL.20.000716
    27.Yingxin Bai, Nianle Wu, Jian Zhang, Jiaqiang Li, Shiqun Li, Jun Xu, and Peizhen Deng, "Passively Q-switched Nd:YVO4 laser with a Cr4+:YAG crystal saturable absorber," Appl. Opt. 36, 2468-2472 (1997). doi: 10.1364/AO.36.002468
    28.Martin Maiwald, Sven Schwertfeger, Reiner Güther, Bernd Sumpf, Katrin Paschke, Christian Dzionk, Götz Erbert, and Günther Tränkle, "600 mW optical output power at 488 nm by use of a high-power hybrid laser diode system and a periodically poled MgO:LiNbO3 bulk crystal," Opt. Lett. 31, 802-804 (2006). doi: 10.1364/OL.31.000802
    29.Orazio Svelto and David C. Hanna, "Principles of lasers 3rd edition," ISBN: 0-306-42967-5
    30.Walter Koechner, "Soilid-state laser engineering," ISBN: 3-540-18747-2
    31.H. Ishizuki, I. Shoji, and T. Taira, "Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature," Appl. Phys. Lett. 82, 4062-4064 (2003). doi: 10.1063/1.1582371
    32.A. Kuroda, S. Kurimura, and Y. Uesu, "Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields," Appl. Phys. Lett. 69, 1565-1567 (2003). doi: 10.1063/1.117031
    33.K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, "Electric-field poling in Mg-doped LiNbO3," J. Appl. Phys. 96, 6585-6590 (2004). doi: 10.1063/1.1811391
    34.T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, "Nd:MgO:LiNbO3 spectroscopy and laser devices," J. Opt. Soc. Am. B 3, 140-148 (1986). doi: 10.1364/JOSAB.3.000140
    35.E. Lallier, J. P. Pocholle, M. Papuchon, M. P. De Micheli, M. J. Li, Qing He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, "Nd:MgO:LiNbO3 channel waveguide laser devices," IEEE J. Quantum Electron. 27, 618-625 (1991). doi: 10.1109/3.81371
    36.J. L. Blows, T. Omatus, J. Dawes, H. Pask, and M. Tateda, "Heat generation in Nd:YVO4 with and without laser action," IEEE Photon. Technol. Lett. 10, 1727-1729 (1998). doi: 10.1109/68.730483
    37.Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004). doi: 10.1063/1.1775281
    38.H. Y. Shen, H. Xu, Z. D. Zeng, W. X. Lin, R. F. Wu, and G. F. Xu, "Measurement of refractive indices and thermal refractive-index coefficients of LiNbO3 crystal doped with 5 mol. % MgO," Appl. Opt. 31, 6695-6697 (1992).
    39.J. J. Degnan, "Theory of the optimally coupled Q-switched laser," IEEE J. Quantum Electron. 25, 214-220 (1989). doi: 10.1109/3.16265
    40.R. R. Willey, "Achieving narrow bandpass filters which meet the requirements for DWDM," Thin Solid Films 398-399, 1-9 (2001). doi: 10.1016/S0040-6090(01)01295-0
    41.J. W. Evans, "Solc Birefringent Filter," J. Opt. Soc. Am. 48, 142-143 (1958). doi: 10.1364/OE.15.009859
    42.R. C. Alferness, "Efficient waveguide electro-optic TE↔TM mode converter/wavelength filter," Appl. Phys. Lett. 36, 513-515 (1980). doi: 10.1063/1.91589
    43.R. C. Alferness and L. L. Buhl, "Electro-optic waveguide TE to TM mode converter with low drive voltage," Opt. Lett. 5, 473- (1980). doi: 10.1364/OL.5.000473
    44.J. Wu, T. Kondo and R. Ito, "Optimal Design for Broadband Quasi-Phase-Matched Second-Harmonic Generation Using Simulated Annealing," J. Lightwave Technol. 13, 456-460 (1995). doi: 10.1109/50.372442
    45.S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," Science 220, 671-680 (1983). doi: 10.1126/science.220.4598.671
    46.C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, "Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter," Opt. Express 15, 2548-2554 (2007). doi: 10.1364/OE.15.002548
    47.M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 23, 2631-2654 (1992). doi: 10.1109/3.161322
    48.J. A. Giordmaine and R. C. Miller, "Tunable coherent parametric oscillation in LiNbO3 at optical frequencies," Phys. Rev. Lett., 14, 973–976 (1965). doi: 10.1103/PhysRevLett.14.973
    49.Y. Ishigame, T. Suhara, and H. Nishihara, "LiNbO3 waveguide second-harmonic-generation device phase matched with a fan-out domain-inverted grating," Opt. Lett. 16, 375-377 (1991). doi: 10.1364/OL.16.000375
    50.M. E. Klein, P. Gross, K. -. Boller, M. Auerbach, P. Wessels, and C. Fallnich, "Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser," Opt. Lett. 28, 920-922 (2003). doi:10.1364/OL.28.000920
    51.N. O''Brien, M. Missey, P. Powers, V. Dominic, and K. L. Schepler, "Electro-optic spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator," Opt. Lett. 24, 1750-1752 (1999). doi:10.1364/OL.24.001750
    52.P. Gross, M. E. Klein, H. Ridderbusch, D. -. Lee, J. -. Meyn, R. Wallenstein, and K. -. Boller, "Wide wavelength tuning of an optical parametric oscillator through electro-optic shaping of the gain spectrum," Opt. Lett. 27, 1433-1435 (2002). doi:10.1364/OL.27.001433

    QR CODE
    :::