跳到主要內容

簡易檢索 / 詳目顯示

研究生: 范志強
Pham Chi Cuong
論文名稱: 結合遺傳演算法與生物氣候指數在優化胡志明市及未來情境下的熱脆弱性之評估
Integrating Genetic Algorithms and Bioclimatic Indices for Optimal Heat Vulnerability Assessment in Ho Chi Minh City and Future Scenarios
指導教授: 林唐煌
Tang-Huang Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 太空及遙測研究中心 - 遙測科技碩士學位學程
Master of Science Program in Remote Sensing Science and Technology
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 143
中文關鍵詞: 熱脆弱性指數通用熱氣候指數主成分分析遺傳演算法PLUS 模型局部氣候區
外文關鍵詞: Heat Vulnerability Index, Universal Thermal Climate Index, Principal Component Analysis, Genetic Algorithm, PLUS model, Local Climate Zone
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著胡志明市 (Ho Chi Minh City, HCMC) 的都市化,造成綠地面積的減少和地表的增溫,加劇了居民暴露於都市熱污染的程度,對不同區塊的社會群體形成了不等的影響與風險.。為正確地評估不同區塊的熱脆弱性,本研究提出了一個綜合性的多尺度框架,用於評估、模擬和優化都市區塊的熱脆弱性,其中通用熱氣候指數 (Universal Thermal Climate Index, UTCI) 使用 ERA5 再分析 資料 和經過驗證的衛星衍生溫度數據, 透過 迴歸模型進行估計,達到了高準確度 (R² = 0.96)。並藉由暴露度 (UTCI)、敏感性和適應能力等指標的整合,構建了一個基於主成分分析 (Principal Component Analysis, PCA) 的熱脆弱性指數 (Heat Vulnerability Index, HVI),進行胡志明全市各空間區塊熱風險的分析。為了評估都市不同土地利用形態的作用,胡志明市劃分為六個 局部氣候區 (Local Climate Zones, LCZs),其中LCZ 3 (緊密低層建築區) 成為熱脆弱性最重要的貢獻者,在隨機森林模型中佔預測重要性的 83% 以上。在2024年,超過 60% 的居民生活在 HVI 高或最高風險區域,且這一比例將隨著都市的發展而顯著地上升。使用區塊生成土地利用模擬 (PLUS) 模型進行的模擬結果顯示,到 2034 年LCZ 3 將增加 17.8%,特別是在快速發展的地區,例如守德區和第七郡。為了減輕這種熱脆弱性,本研究應用了遺傳演算法 (Genetic Algorithm, GA) 來優化發展計畫下的 LCZ 空間配置。GA 模型成功地將整體適應度值降低了約 12%,並將 HVI 熱點的數量從六個減半至三個。從空間分布的預估結果呈現出高風險和最高風險區域平均減少了 5 平方公里,同時全市低 HVI 區域淨增加了 50 平方公里。此一研究結果對於後續胡志明市的發展策略提供了一個明確的參考訊息,可大幅地降低都會區熱脆弱性與暴露風險。


    As Ho Chi Minh City (HCMC) continues to urbanize, rising land surface temperatures and reduction of green spaces have intensified residents’ exposure to urban heat stress, posing diverse risks across socio-spatial groups. This study introduces a comprehensive, multi-scale framework for assessing, simulating, and optimizing urban heat vulnerability. The Universal Thermal Climate Index (UTCI) was estimated using a regression model based on ERA5 reanalysis and validated satellite-derived temperature data, achieving high accuracy (R² = 0.96). A Principal Component Analysis (PCA)-based Heat Vulnerability Index (HVI) was then constructed by integrating indicators of exposure (UTCI), sensitivity, and adaptive capacity, enabling spatial mapping of risk across the city. To assess the role of urban morphology, HCMC was classified into six Local Climate Zones (LCZs). Among them, LCZ 3 (Compact Low-Rise) emerged as the most significant contributor to heat vulnerability, accounting for more than 83% of predictive importance in the Random Forest model. Currently, over 60% of residents live in areas with high or highest HVI, and this proportion is projected to rise significantly by 2034. Simulations using the Patch-generating Land Use Simulation (PLUS) model project a 17.8% increase in LCZ 3 by 2034, particularly in rapidly growing districts such as Thu Duc and District 7. To mitigate this heat vulnerability, A Genetic Algorithm (GA) was applied to optimize LCZ spatial configurations under development plans. The GA model successfully reduced the overall fitness value by approximately 12% and halved the number of HVI hotspots from six to three. Spatially, this translated into a 5 km² reduction in high and highest-risk zones and a net gain of 50 km² in low-HVI areas across the city. These findings provide a potential strategy for guiding urban growth in ways that reduce heat vulnerability while supporting continued development.

    摘要 i Abstract ii Acknowledgment iii Table of Contents iv List of Abbreviations ix List of Tables x List of Figures xi CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Problem Statement and Research Significance 3 1.3 Objectives 5 CHAPTER 2 LITERATURE REVIEW 6 2.1 Heat Vulnerability Index (HVI) 6 2.1.1 Development and Theoretical Foundation of HVI 6 2.1.2 Key Components: Exposure, Sensitivity, and Adaptive Capacity 7 2.1.3 Applications of HVI in Developed vs Developing Countries 8 2.1.4 Universal Thermal Climate Index (UTCI) 9 2.2 Urban Form and Local Climate Zones (LCZs) 11 2.2.1 LCZ Framework and Classification 11 2.2.2 Applications of LCZ in Heat Vulnerability Studies 13 2.3 Patch-generating Land Use Simulation (PLUS) 15 2.3.1 The PLUS Model Definition and Its Advantages 15 2.3.2 Integrating Scenario Planning and LCZ Projections with the PLUS Model 16 2.4 Genetic Algorithms in Urban Planning 16 2.4.1 GAs Applications in Land Use Planning and Urban Thermal Mitigation 17 2.4.2 Integrating Heat Vulnerability into GA-Based Urban Planning 18 CHAPTER 3 METHODOLOGY 20 3.1 Study Area 20 3.1.1 Geographic Location 20 3.1.2 Natural Conditions 21 3.1.3 Socioeconomic Characteristics 22 3.2 Dataset 23 3.2.1 Remote Sensing Data 23 3.2.2 Meteorological and Climate Data 24 3.2.3 Ancillary Geospatial and Socio-Economic Data 25 3.3 Methods 27 3.3.1 Research Flow 27 3.3.2 Image processing 28 3.3.3 Heat Vulnerability Index Construction 29 3.3.3.1 Retrieval of Land Surface Temperature (LST) 29 3.3.3.2 UTCI Calculation 33 3.3.3.3 Nighttime Light Intensity (NL) 35 3.3.3.4 Medical Facility Density (MD) 36 3.3.3.5 Modified Normalized Difference Water Index (MNDWI) 37 3.3.3.6 Enhanced Normalized Difference Impervious Surface Index (ENDISI) 38 3.3.3.7 Population Density (PD) 39 3.3.3.8 Road Density 39 3.3.3.9 Compute Heat Vulnerability Index (HVI) using PCA 41 3.3.4 LCZ Classification 43 3.3.4.1 LCZ Classification Workflow 43 3.3.4.2 LCZ Quality Control Process 45 3.3.4.3 Spatial alignment using Fishnet Grids 47 3.3.5 Simulating Future Local Climate Zones (LCZs) Using the PLUS Model 48 3.3.5.1 Data Preprocessing 48 3.3.5.2 Land expansion analysis strategy (LEAS) 50 3.3.5.3 CA based on multi-type random patch seeds (CARS) 50 3.3.5.4 Simulating LCZ 2034 52 3.3.5.5 Policy-Based Scenario Simulation Using Development Zones in PLUS 53 3.3.6 Predicting HVI in 2034 Using LCZ-Based Random Forest Regression 55 3.3.7 Optimizing the Heat Vulnerability Index (HVI) Using Genetic Algorithms 56 3.3.7.1 Initial Setup and Simulation 57 3.3.7.2 Genetic Algorithms Optimization and Convergence 59 CHAPTER 4 RESULTS AND DISCUSSION 61 4.1 Results 61 4.1.1 Estimation and Validation of the Bioclimatic Index (UTCI) 61 4.1.1.1 Validation of ERA5 Meteorological Variables Using Ground-Based Weather Station Data 61 4.1.1.2 Calculation of Universal Thermal Climate Index (UTCI) 63 4.1.1.3 Spatial and Temporal Analysis of UTCI Patterns During the 2024 Dry Season 66 4.1.2 Development of the Heat Vulnerability Index (HVI) 68 4.1.2.1 Integration of Multi-Source Socio-Environmental Indicators 68 4.1.2.2 Principal Component Analysis (PCA): Eigenvalues and Factor Loadings 70 4.1.2.3 Spatial Distribution of HVI in 2024 72 4.1.3 Local Climate Zone (LCZ) Classification and Scenario Simulation 74 4.1.3.1 LCZ Classification Accuracy and Quality Control 74 4.1.3.2 LCZ Distribution and Transition from 2014 to 2024 76 4.1.3.3 LCZ Transition Simulation to 2019 and 2024 Using the PLUS Model 81 4.1.3.4 Simulate LCZ 2034 Using CARS 85 4.1.4 Projected HVI Under LCZ-Based Urban Change 88 4.1.4.1 Association Between Local Climate Zones (LCZs) and Heat Vulnerability Index (HVI) 88 4.1.4.2 Predicting Heat Vulnerability Index (HVI) in 2034 using LCZ-Based Random Forest Regression 90 4.1.5 Optimization of Heat Vulnerability Using Genetic Algorithms (GAs) 93 4.1.5.1 GA Convergence and Fitness Function Evolution Across Generations 95 4.1.5.2 Comparison of Optimized vs Initial HVI Distributions 98 4.1.5.3 Optimization scenarios for city development in 2034 100 4.2 Discussion 106 4.2.1 UTCI Estimation and Validation: Strengths, Uncertainties, and Future Enhancements 106 4.2.2 Constructing the Heat Vulnerability Index (HVI): Dimensions, Drivers, and Data Challenges 107 4.2.3 Local Climate Zone (LCZ) Mapping and PLUS Simulation: Simplifications, and Refinement 108 4.2.4 Linking LCZ to HVI Using Machine Learning: Model Efficacy and Scalability 109 4.2.5 Spatial Optimization Using Genetic Algorithms: Reducing Vulnerability under Development Scenarios 110 CHAPTER 5 CONCLUSIONS 112 REFERENCES 115 APPENDIXES 124

    REFERENCES
    1. AR5 Climate Change 2013: The Physical Science Basis — IPCC.
    2. Climate Change: Global Temperature | NOAA Climate.Gov Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (accessed on 21 May 2025).
    3. Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing Frequency, Intensity and Duration of Observed Global Heatwaves and Warm Spells. Geophys. Res. Lett. 2012, 39, 2012GL053361, doi:10.1029/2012GL053361.
    4. Campbell, S.L.; Remenyi, T.A.; Williamson, G.J.; White, C.J.; Johnston, F.H. The Value of Local Heatwave Impact Assessment: A Case-Crossover Analysis of Hospital Emergency Department Presentations in Tasmania, Australia. Int. J. Environ. Res. Public. Health 2019, 16, 3715, doi:10.3390/ijerph16193715.
    5. Li, Y.; Akkus, C.; Yu, X.; Joyner, A.; Kmet, J.; Sweat, D.; Jia, C. Heatwave Events and Mortality Outcomes in Memphis, Tennessee: Testing Effect Modification by Socioeconomic Status and Urbanicity. Int. J. Environ. Res. Public. Health 2019, 16, 4568, doi:10.3390/ijerph16224568.
    6. Vardoulakis, S.; Dear, K.; Hajat, S.; Heaviside, C.; Eggen, B.; McMichael, A.J. Comparative Assessment of the Effects of Climate Change on Heat- and Cold-Related Mortality in the United Kingdom and Australia. Environ. Health Perspect. 2014, 122, 1285–1292, doi:10.1289/ehp.1307524.
    7. Zeng, Q.; Li, G.; Cui, Y.; Jiang, G.; Pan, X. Estimating Temperature-Mortality Exposure-Response Relationships and Optimum Ambient Temperature at the Multi-City Level of China. Int. J. Environ. Res. Public. Health 2016, 13, 279, doi:10.3390/ijerph13030279.
    8. Watts, N.; Amann, M.; Ayeb-Karlsson, S.; Belesova, K.; Bouley, T.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; Chambers, J.; et al. The Lancet Countdown on Health and Climate Change: From 25 Years of Inaction to a Global Transformation for Public Health. The Lancet 2018, 391, 581–630, doi:10.1016/S0140-6736(17)32464-9.
    9. Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; García-Herrera, R. The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe. Science 2011, 332, 220–224, doi:10.1126/science.1201224.
    10. Wolf, T.; McGregor, G. The Development of a Heat Wave Vulnerability Index for London, United Kingdom. Weather Clim. Extrem. 2013, 1, 59–68, doi:10.1016/j.wace.2013.07.004.
    11. Inostroza, L.; Palme, M.; De La Barrera, F. A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile. PLOS ONE 2016, 11, e0162464, doi:10.1371/journal.pone.0162464.
    12. Rathi, S.K.; Chakraborty, S.; Mishra, S.K.; Dutta, A.; Nanda, L. A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Urbanites of Four Cities of India. Int. J. Environ. Res. Public. Health 2021, 19, 283, doi:10.3390/ijerph19010283.
    13. Zuhra, S.S.; Tabinda, A.B.; Yasar, A. Appraisal of the Heat Vulnerability Index in Punjab: A Case Study of Spatial Pattern for Exposure, Sensitivity, and Adaptive Capacity in Megacity Lahore, Pakistan. Int. J. Biometeorol. 2019, 63, 1669–1682, doi:10.1007/s00484-019-01784-0.
    14. Bao, J.; Li, X.; Yu, C. The Construction and Validation of the Heat Vulnerability Index, a Review. Int. J. Environ. Res. Public. Health 2015, 12, 7220–7234, doi:10.3390/ijerph120707220.
    15. Méndez-Lázaro, P.; Muller-Karger, F.E.; Otis, D.; McCarthy, M.J.; Rodríguez, E. A Heat Vulnerability Index to Improve Urban Public Health Management in San Juan, Puerto Rico. Int. J. Biometeorol. 2018, 62, 709–722, doi:10.1007/s00484-017-1319-z.
    16. Reid, C.E.; Mann, J.K.; Alfasso, R.; English, P.B.; King, G.C.; Lincoln, R.A.; Margolis, H.G.; Rubado, D.J.; Sabato, J.E.; West, N.L.; et al. Evaluation of a Heat Vulnerability Index on Abnormally Hot Days: An Environmental Public Health Tracking Study. Environ. Health Perspect. 2012, 120, 715–720, doi:10.1289/ehp.1103766.
    17. Bradford, K.; Abrahams, L.; Hegglin, M.; Klima, K. A Heat Vulnerability Index and Adaptation Solutions for Pittsburgh, Pennsylvania. Environ. Sci. Technol. 2015, 49, 11303–11311, doi:10.1021/acs.est.5b03127.
    18. Karanja, J.; Kiage, L. Perspectives on Spatial Representation of Urban Heat Vulnerability. Sci. Total Environ. 2021, 774, 145634, doi:10.1016/j.scitotenv.2021.145634.
    19. Szagri, D.; Nagy, B.; Szalay, Z. How Can We Predict Where Heatwaves Will Have an Impact? – A Literature Review on Heat Vulnerability Indexes. Urban Clim. 2023, 52, 101711, doi:10.1016/j.uclim.2023.101711.
    20. Zhang, R.; Yang, J.; Ma, X.; Xiao, X.; Xia, J. (Cecilia) Optimal Allocation of Local Climate Zones Based on Heat Vulnerability Perspective. Sustain. Cities Soc. 2023, 99, 104981, doi:10.1016/j.scs.2023.104981.
    21. Niu, Y.; Li, Z.; Gao, Y.; Liu, X.; Xu, L.; Vardoulakis, S.; Yue, Y.; Wang, J.; Liu, Q. A Systematic Review of the Development and Validation of the Heat Vulnerability Index: Major Factors, Methods, and Spatial Units. Curr. Clim. Change Rep. 2021, 7, 87–97, doi:10.1007/s40641-021-00173-3.
    22. Setiawati, M.D.; Jarzebski, M.P.; Fukushi, K. Heat Vulnerability Index Development and Application in Medan City, Indonesia. In Integrated Research on Disaster Risks; Djalante, R., Bisri, M.B.F., Shaw, R., Eds.; Disaster Risk Reduction; Springer International Publishing: Cham, 2021; pp. 87–110 ISBN 978-3-030-55562-7.
    23. Singh, A.M. Mapping of Heat Vulnerability in Indian Urban Centres under Threat of Global Warming. J. Appl. Nat. Sci. 2023, 15, 1514–1519, doi:10.31018/jans.v15i4.5039.
    24. Pham, C.C.; Nguyen, N.T.; Tran, Q.T.; Nguyen, N.N. Prediction of Surface Urban Heat Island in Ho Chi Minh City, Viet Nam Using Remote Sensing and Logistic Regression Model. IOP Conf. Ser. Earth Environ. Sci. 2024, 1349, 012031, doi:10.1088/1755-1315/1349/1/012031.
    25. Nguyen, N.T.; Pham, C.C.; Nguyen, T.N.H. Applying Geographically Weighted Regression to Quantify the Impact of Impervious Surface Density on Land Surface Temperature in Ho Chi Minh City, Vietnam. IOP Conf. Ser. Earth Environ. Sci. 2023, 1170, 012018, doi:10.1088/1755-1315/1170/1/012018.
    26. Nguyen, N.T.; Nguyen, N.N.; Pham, C.C. Identifying Impervious Surface Hot Spots in Ho Chi Minh City Using Object-Based Classification and Spatial Statistics. IOP Conf. Ser. Earth Environ. Sci. 2024, 1349, 012030, doi:10.1088/1755-1315/1349/1/012030.
    27. Błażejczyk, K.; Broede, P.; Fiala, D.; Havenith, G.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Kunert, A. Principles of the New Universal Thermal Climate Index (UTCI) and Its Application to Bioclimatic Research in European Scale. Misc. Geogr. 2010, 14, 91–102, doi:10.2478/mgrsd-2010-0009.
    28. Di Napoli, C.; Pappenberger, F.; Cloke, H.L. Assessing Heat-Related Health Risk in Europe via the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2018, 62, 1155–1165, doi:10.1007/s00484-018-1518-2.
    29. Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to Selected Thermal Indices. Int. J. Biometeorol. 2012, 56, 515–535, doi:10.1007/s00484-011-0453-2.
    30. Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900, doi:10.1175/BAMS-D-11-00019.1.
    31. Aslam, A.; Rana, I.A. The Use of Local Climate Zones in the Urban Environment: A Systematic Review of Data Sources, Methods, and Themes. Urban Clim. 2022, 42, 101120, doi:10.1016/j.uclim.2022.101120.
    32. Zhang, R.; Yang, J.; Ma, X.; Xiao, X.; Xia, J. (Cecilia) Optimal Allocation of Local Climate Zones Based on Heat Vulnerability Perspective. Sustain. Cities Soc. 2023, 99, 104981, doi:10.1016/j.scs.2023.104981.
    33. Gilabert, J.; Deluca, A.; Lauwaet, D.; Ballester, J.; Corbera, J.; Llasat, M.C. Assessing Heat Exposure to Extreme Temperatures in Urban Areas Using the Local Climate Zone Classification. Nat. Hazards Earth Syst. Sci. 2021, 21, 375–391, doi:10.5194/nhess-21-375-2021.
    34. Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569, doi:10.1016/j.compenvurbsys.2020.101569.
    35. Guo, P.; Wang, H.; Qin, F.; Miao, C.; Zhang, F. Coupled MOP and PLUS-SA Model Research on Land Use Scenario Simulations in Zhengzhou Metropolitan Area, Central China. Remote Sens. 2023, 15, 3762, doi:10.3390/rs15153762.
    36. Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569, doi:10.1016/j.compenvurbsys.2020.101569.
    37. Shu, Y.; Lin, K.; Yu, Y. Study on Urban Land Simulation under the Perspective of Local Climate Zoning—A Case Study of Guiyang City. Sustainability 2024, 16, 8159, doi:10.3390/su16188159.
    38. Oukawa, G.Y.; Krecl, P.; Targino, A.C. Fine-Scale Modeling of the Urban Heat Island: A Comparison of Multiple Linear Regression and Random Forest Approaches. Sci. Total Environ. 2022, 815, 152836, doi:10.1016/j.scitotenv.2021.152836.
    39. Chen, G.; Shi, Y.; Wang, R.; Ren, C.; Ng, E.; Fang, X.; Ren, Z. Integrating Weather Observations and Local-Climate-Zone-Based Landscape Patterns for Regional Hourly Air Temperature Mapping Using Machine Learning. Sci. Total Environ. 2022, 841, 156737, doi:10.1016/j.scitotenv.2022.156737.
    40. Chen J.; Shi R.; Sun G.; Guo Y.; Deng M.; Zhang X. Simulation-Based Optimization of the Urban Thermal Environment through Local Climate Zones Reorganization in Changsha City, China with the FLUS Model. Sustainability 2023, 15, 12312, doi:10.3390/su151612312.
    41. Ding, X.; Zheng, M.; Zheng, X. The Application of Genetic Algorithm in Land Use Optimization Research: A Review. Land 2021, 10, 526, doi:10.3390/land10050526.
    42. Xu X.; Liu Y.; Wang W.; Xu N.; Liu K.; Yu G. Urban Layout Optimization Based on Genetic Algorithm for Microclimate Performance in the Cold Region of China. Appl. Sci. 2019, 9, 4747, doi:10.3390/app9224747.
    43. Chen, J.; Dong, Z.; Shi, R.; Sun, G.; Guo, Y.; Peng, Z.; Deng, M.; Chen, K. Urban Multi-Scenario Land Use Optimization Simulation Considering Local Climate Zones. Remote Sens. 2024, 16, 4342, doi:10.3390/rs16224342.
    44. Son, N.-T.; Chen, C.-F.; Chen, C.-R.; Thanh, B.-X.; Vuong, T.-H. Assessment of Urbanization and Urban Heat Islands in Ho Chi Minh City, Vietnam Using Landsat Data. Sustain. Cities Soc. 2017, 30, 150–161, doi:10.1016/j.scs.2017.01.009.
    45. Ferreira, F.L.E.S.; Pereira, E.B.; Gonçalves, A.R.; Costa, R.S.; Bezerra, F.G.S. An Explicitly Spatial Approach to Identify Heat Vulnerable Urban Areas and Landscape Patterns. Urban Clim. 2021, 40, 101021, doi:10.1016/j.uclim.2021.101021.
    46. Xiang, Y.; Yuan, C.; Cen, Q.; Huang, C.; Wu, C.; Teng, M.; Zhou, Z. Heat Risk Assessment and Response to Green Infrastructure Based on Local Climate Zones. Build. Environ. 2024, 248, 111040, doi:10.1016/j.buildenv.2023.111040.
    47. Iqbal, N.; Aslam, A.; Jamshed, A.; Ravan, M.; Birkmann, J.; Rana, I.A. Assessment of Human Heat Vulnerability of Different Local Climate Zones in Lahore Coupling Remote Sensing and Socioeconomic Data. In Proceedings of the 2023 Joint Urban Remote Sensing Event (JURSE); IEEE: Heraklion, Greece, May 17 2023; pp. 1–4.
    48. Miller, F.; Dun, O. Resettlement and the Environment in Vietnam: Implications for Climate Change Adaptation Planning. Asia Pac. Viewp. 2019, 60, 132–147, doi:10.1111/apv.12228.
    49. Wilhelmi, O.V.; Hayden, M.H. Connecting People and Place: A New Framework for Reducing Urban Vulnerability to Extreme Heat. Environ. Res. Lett. 2010, 5, 014021, doi:10.1088/1748-9326/5/1/014021.
    50. Reid, C.E.; O’Neill, M.S.; Gronlund, C.J.; Brines, S.J.; Brown, D.G.; Diez-Roux, A.V.; Schwartz, J. Mapping Community Determinants of Heat Vulnerability. Environ. Health Perspect. 2009, 117, 1730–1736, doi:10.1289/ehp.0900683.
    51. Rathi, S.K.; Chakraborty, S.; Mishra, S.K.; Dutta, A.; Nanda, L. A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Urbanites of Four Cities of India. Int. J. Environ. Res. Public. Health 2021, 19, 283, doi:10.3390/ijerph19010283.
    52. Conlon, K.C.; Mallen, E.; Gronlund, C.J.; Berrocal, V.J.; Larsen, L.; O’Neill, M.S. Mapping Human Vulnerability to Extreme Heat: A Critical Assessment of Heat Vulnerability Indices Created Using Principal Components Analysis. Environ. Health Perspect. 2020, 128, 097001, doi:10.1289/EHP4030.
    53. Wilhelmi, O.V.; Hayden, M.H. Connecting People and Place: A New Framework for Reducing Urban Vulnerability to Extreme Heat. Environ. Res. Lett. 2010, 5, 014021, doi:10.1088/1748-9326/5/1/014021.
    54. School of Geomatic Science and Natural Resources, College of Built Environment,Universiti Teknologi MARA, 40450, Shah Alam,Selangor, MALAYSIA; Salleh, S.A.; Isa, N.A.; Faculty of Asia Built Environment,University of Geomatika Malaysia, Setiawangsa,54200, Kuala Lumpur, MALAYSIA; Siman, N.A.; As White Global Sdn. Bhd, Suite, 10.1 Level 10,Centrepoint North MidValley City,58000, Kuala Lumpur, MALAYSIA; Zakaria, N.H.; School of Geomatic Science and Natural Resources, College of Built Environment,Universiti Teknologi MARA, 40450, Shah Alam,Selangor, MALAYSIA; L. Pintor, L.; Ecosystems Research and Development Bureau (ERDB), Department of Environment and Natural Resources,College, Laguna, PHILIPPINES; et al. The Development of the Vulnerability Index (VI) Using Principal Component Analysis (PCA). Int. J. Sustain. Constr. Eng. Technol. 2023, 14, doi:10.30880/ijscet.2023.14.05.002.
    55. 2020Spring_AZ_PhiladelphiaHealthAQ_TechPaper_FD-Final.
    56. Niu, Y.; Li, Z.; Gao, Y.; Liu, X.; Xu, L.; Vardoulakis, S.; Yue, Y.; Wang, J.; Liu, Q. A Systematic Review of the Development and Validation of the Heat Vulnerability Index: Major Factors, Methods, and Spatial Units. Curr. Clim. Change Rep. 2021, 7, 87–97, doi:10.1007/s40641-021-00173-3.
    57. Weber, S.; Sadoff, N.; Zell, E.; De Sherbinin, A. Policy-Relevant Indicators for Mapping the Vulnerability of Urban Populations to Extreme Heat Events: A Case Study of Philadelphia. Appl. Geogr. 2015, 63, 231–243, doi:10.1016/j.apgeog.2015.07.006.
    58. Grigorescu, I.; Mocanu, I.; Mitrică, B.; Dumitraşcu, M.; Dumitrică, C.; Dragotă, C.-S. Socio-Economic and Environmental Vulnerability to Heat-Related Phenomena in Bucharest Metropolitan Area. Environ. Res. 2021, 192, 110268, doi:10.1016/j.envres.2020.110268.
    59. Nayak, S.G.; Shrestha, S.; Kinney, P.L.; Ross, Z.; Sheridan, S.C.; Pantea, C.I.; Hsu, W.H.; Muscatiello, N.; Hwang, S.A. Development of a Heat Vulnerability Index for New York State. Public Health 2018, 161, 127–137, doi:10.1016/j.puhe.2017.09.006.
    60. Rinner, C.; Patychuk, D.; Bassil, K.; Nasr, S.; Gower, S.; Campbell, M. The Role of Maps in Neighborhood-Level Heat Vulnerability Assessment for the City of Toronto. Cartogr. Geogr. Inf. Sci. 2010, 37, 31–44, doi:10.1559/152304010790588089.
    61. Wolf, T.; McGregor, G.; Analitis, A. Performance Assessment of a Heat Wave Vulnerability Index for Greater London, United Kingdom. Weather Clim. Soc. 2014, 6, 32–46, doi:10.1175/WCAS-D-13-00014.1.
    62. Tran, D.N.; Doan, V.Q.; Nguyen, V.T.; Khan, A.; Thai, P.K.; Cunrui, H.; Chu, C.; Schak, E.; Phung, D. Spatial Patterns of Health Vulnerability to Heatwaves in Vietnam. Int. J. Biometeorol. 2020, 64, 863–872, doi:10.1007/s00484-020-01876-2.
    63. Cuong, P.C.; Lin, T.-H. Assessing Heat Vulnerability in Ho Chi Minh City: Insights from Local Climate Zones and the Heat Vulnerability Index Model. In Proceedings of the Land Surface and Cryosphere Remote Sensing V; Hwang, C., Chen, J.M., Eds.; SPIE: Kaohsiung, Taiwan, January 3 2025; p. 23.
    64. Universal Thermal Climate Index (UTCI).
    65. Błażejczyk, K.; Broede, P.; Fiala, D.; Havenith, G.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Kunert, A. Principles of the New Universal Thermal Climate Index (UTCI) and Its Application to Bioclimatic Research in European Scale. Misc. Geogr. 2010, 14, 91–102, doi:10.2478/mgrsd-2010-0009.
    66. BR^|^Ouml;DE, P.; Blazejczyk, K.; Fiala, D.; Havenith, G.; HOLM^|^Eacute;R, I.; Jendritzky, G.; Kuklane, K.; Kampmann, B. The Universal Thermal Climate Index UTCI Compared to Ergonomics Standards for Assessing the Thermal Environment. Ind. Health 2013, 51, 16–24, doi:10.2486/indhealth.2012-0098.
    67. Setiawati, M.D.; Jarzebski, M.P.; Gomez-Garcia, M.; Fukushi, K. Accelerating Urban Heating Under Land-Cover and Climate Change Scenarios in Indonesia: Application of the Universal Thermal Climate Index. Front. Built Environ. 2021, 7, 622382, doi:10.3389/fbuil.2021.622382.
    68. Applications of the Universal Thermal Climate Index UTCI in Biometeorology: Latest Developments and Case Studies; Krüger, E.L., Ed.; Springer International Publishing: Cham, 2021; ISBN 978-3-030-76715-0.
    69. Bröde, P.; Krüger, E.L.; Rossi, F.A. ASSESSMENT OF URBAN OUTDOOR THERMAL COMFORT BY THE UNIVERSAL THERMAL CLIMATE INDEX UTCI. 2011.
    70. Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to Selected Thermal Indices. Int. J. Biometeorol. 2012, 56, 515–535, doi:10.1007/s00484-011-0453-2.
    71. Di Napoli, C.; Barnard, C.; Prudhomme, C.; Cloke, H.L.; Pappenberger, F. ERA5‐HEAT: A Global Gridded Historical Dataset of Human Thermal Comfort Indices from Climate Reanalysis. Geosci. Data J. 2021, 8, 2–10, doi:10.1002/gdj3.102.
    72. Antonescu, B.; Mărmureanu, L.; Vasilescu, J.; Marin, C.; Andrei, S.; Boldeanu, M.; Ene, D.; Ţilea, A. A 41‐year Bioclimatology of Thermal Stress in Europe. Int. J. Climatol. 2021, 41, 3934–3952, doi:10.1002/joc.7051.
    73. Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900, doi:10.1175/BAMS-D-11-00019.1.
    74. Huang, F.; Jiang, S.; Zhan, W.; Bechtel, B.; Liu, Z.; Demuzere, M.; Huang, Y.; Xu, Y.; Ma, L.; Xia, W.; et al. Mapping Local Climate Zones for Cities: A Large Review. Remote Sens. Environ. 2023, 292, 113573, doi:10.1016/j.rse.2023.113573.
    75. Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900, doi:10.1175/BAMS-D-11-00019.1.
    76. Id, S. LOCAL CLIMATE ZONE CLASSIFICATION SYSTEM.
    77. Bechtel, B.; Alexander, P.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I. Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS Int. J. Geo-Inf. 2015, 4, 199–219, doi:10.3390/ijgi4010199.
    78. Fung, K.Y.; Yang, Z.-L.; Niyogi, D. Improving the Local Climate Zone Classification with Building Height, Imperviousness, and Machine Learning for Urban Models. Comput. Urban Sci. 2022, 2, 16, doi:10.1007/s43762-022-00046-x.
    79. Bechtel, B.; Alexander, P.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I. Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS Int. J. Geo-Inf. 2015, 4, 199–219, doi:10.3390/ijgi4010199.
    80. Chen, Y.; Zheng, B.; Hu, Y. Mapping Local Climate Zones Using ArcGIS-Based Method and Exploring Land Surface Temperature Characteristics in Chenzhou, China. Sustainability 2020, 12, 2974, doi:10.3390/su12072974.
    81. Han J.; Mo N.; Cai J.; Ouyang L.; Liu Z. Advancing the local climate zones framework: a critical review of methodological progress, persisting challenges, and future research prospects. Humanit. Soc. Sci. Commun. 2024, 11, 538, doi:10.1057/s41599-024-03072-8.
    82. Demuzere, M.; Kittner, J.; Bechtel, B. LCZ Generator: A Web Application to Create Local Climate Zone Maps. Front. Environ. Sci. 2021, 9, 637455, doi:10.3389/fenvs.2021.637455.
    83. Demuzere, M.; Kittner, J.; Martilli, A.; Mills, G.; Moede, C.; Stewart, I.D.; Van Vliet, J.; Bechtel, B. A Global Map of Local Climate Zones to Support Earth System Modelling and Urban-Scale Environmental Science. Earth Syst. Sci. Data 2022, 14, 3835–3873, doi:10.5194/essd-14-3835-2022.
    84. Chen, Q.; Ding, M.; Yang, X.; Hu, K.; Qi, J. Spatially Explicit Assessment of Heat Health Risk by Using Multi-Sensor Remote Sensing Images and Socioeconomic Data in Yangtze River Delta, China. Int. J. Health Geogr. 2018, 17, 15, doi:10.1186/s12942-018-0135-y.
    85. Chen, Y.; Li, J.; Hu, Y.; Liu, L. Spatial and Temporal Characteristics of Nighttime UHII Based on Local Climate Zone Scheme Using Mobile Measurement-A Case Study of Changsha. Build. Environ. 2023, 228, 109869, doi:10.1016/j.buildenv.2022.109869.
    86. Sun, Y.; Li, Y.; Ma, R.; Gao, C.; Wu, Y. Mapping Urban Socio-Economic Vulnerability Related to Heat Risk: A Grid-Based Assessment Framework by Combing the Geospatial Big Data. Urban Clim. 2022, 43, 101169, doi:10.1016/j.uclim.2022.101169.
    87. Ho, H.C.; Knudby, A.; Chi, G.; Aminipouri, M.; Lai, D.Y.-F. Spatiotemporal Analysis of Regional Socio-Economic Vulnerability Change Associated with Heat Risks in Canada. Appl. Geogr. 2018, 95, 61–70, doi:10.1016/j.apgeog.2018.04.015.
    88. He, C.; Ma, L.; Zhou, L.; Kan, H.; Zhang, Y.; Ma, W.; Chen, B. Exploring the Mechanisms of Heat Wave Vulnerability at the Urban Scale Based on the Application of Big Data and Artificial Societies. Environ. Int. 2019, 127, 573–583, doi:10.1016/j.envint.2019.01.057.
    89. Estoque, R.C.; Ooba, M.; Seposo, X.T.; Togawa, T.; Hijioka, Y.; Takahashi, K.; Nakamura, S. Heat Health Risk Assessment in Philippine Cities Using Remotely Sensed Data and Social-Ecological Indicators. Nat. Commun. 2020, 11, 1581, doi:10.1038/s41467-020-15218-8.
    90. Xiang, Z.; Qin, H.; He, B.-J.; Han, G.; Chen, M. Heat Vulnerability Caused by Physical and Social Conditions in a Mountainous Megacity of Chongqing, China. Sustain. Cities Soc. 2022, 80, 103792, doi:10.1016/j.scs.2022.103792.
    91. Zhou, Y.; Zhang, G.; Jiang, L.; Chen, X.; Xie, T.; Wei, Y.; Xu, L.; Pan, Z.; An, P.; Lun, F. Mapping Local Climate Zones and Their Associated Heat Risk Issues in Beijing: Based on Open Data. Sustain. Cities Soc. 2021, 74, 103174, doi:10.1016/j.scs.2021.103174.
    92. Mutale, B.; Qiang, F. Modeling Future Land Use and Land Cover under Different Scenarios Using Patch-Generating Land Use Simulation Model. A Case Study of Ndola District. Front. Environ. Sci. 2024, 12, 1362666, doi:10.3389/fenvs.2024.1362666.
    93. Marey, A.; Wang, L. (Leon); Goubran, S.; Gaur, A.; Lu, H.; Leroyer, S.; Belair, S. Forecasting Urban Land Use Dynamics Through Patch-Generating Land Use Simulation and Markov Chain Integration: A Multi-Scenario Predictive Framework. Sustainability 2024, 16, 10255, doi:10.3390/su162310255.
    94. Ren, J.; Yang, J.; Yu, W.; Cong, N.; Xiao, X.; Xia, J.; Li, X. Mapping of Local Climate Zones and Heat Hazard Assessment from a Historical-Future Perspective. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 12622–12636, doi:10.1109/JSTARS.2024.3424542.
    95. Srinivas, M.; Patnaik, L.M. Genetic Algorithms: A Survey. Computer 1994, 27, 17–26, doi:10.1109/2.294849.
    96. Ding, X.; Zheng, M.; Zheng, X. The Application of Genetic Algorithm in Land Use Optimization Research: A Review. Land 2021, 10, 526, doi:10.3390/land10050526.
    97. Rahman, Md.M.; Szabó, G. Multi-Objective Urban Land Use Optimization Using Spatial Data: A Systematic Review. Sustain. Cities Soc. 2021, 74, 103214, doi:10.1016/j.scs.2021.103214.
    98. Porta, J.; Parapar, J.; Doallo, R.; Rivera, F.F.; Santé, I.; Crecente, R. High Performance Genetic Algorithm for Land Use Planning. Comput. Environ. Urban Syst. 2013, 37, 45–58, doi:10.1016/j.compenvurbsys.2012.05.003.
    99. Pan, T.; Zhang, Y.; Su, F.; Lyne, V.; Cheng, F.; Xiao, H. Practical Efficient Regional Land-Use Planning Using Constrained Multi-Objective Genetic Algorithm Optimization. ISPRS Int. J. Geo-Inf. 2021, 10, 100, doi:10.3390/ijgi10020100.
    100. Nguyen, N. Climate Change Impact Assessment and Adaptation in Ho Chi Minh City. ICEM.
    101. NIEN-GIAM-THONG-KE-2023_Ban-Quyen-1.
    102. Igini, M. Sea Level Rise Projections: 10 Cities at Risk of Flooding. Earth.Org 2022.
    103. Ho Chi Minh City Climate: Weather Ho Chi Minh City & Temperature by Month Available online: https://en.climate-data.org/asia/vietnam/ho-chi-minh-city/ho-chi-minh-city-4235/ (accessed on 2 June 2025).
    104. Vietnam - Monsoon, Tropical, Humid | Britannica Available online: https://www.britannica.com/place/Vietnam/Climate (accessed on 2 June 2025).
    105. TONG QUAN KINH TE XA HOI.
    106. DAN SO VA LAO DONG.
    107. Napoli, C.D. Thermal Comfort Indices Derived from ERA5 Reanalysis 2020.
    108. C3S ERA5 Hourly Data on Single Levels from 1940 to Present 2018.
    109. Copernicus Climate Change Service ERA5 Hourly Data on Pressure Levels from 1940 to Present 2018.
    110. Quintano, C.; Fernández-Manso, A.; Calvo, L.; Marcos, E.; Valbuena, L. Land Surface Temperature as Potential Indicator of Burn Severity in Forest Mediterranean Ecosystems. Int. J. Appl. Earth Obs. Geoinformation 2015, 36, 1–12, doi:10.1016/j.jag.2014.10.015.
    111. Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land Surface Temperature Retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440, doi:10.1016/j.rse.2004.02.003.
    112. Guha, S.; Govil, H.; Dey, A.; Gill, N. Analytical Study of Land Surface Temperature with NDVI and NDBI Using Landsat 8 OLI and TIRS Data in Florence and Naples City, Italy. Eur. J. Remote Sens. 2018, 51, 667–678, doi:10.1080/22797254.2018.1474494.
    113. Bröde, P.; Fiala, D.; Błażejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the Operational Procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494, doi:10.1007/s00484-011-0454-1.
    114. Li, H.; Zhou, Y.; Li, X.; Meng, L.; Wang, X.; Wu, S.; Sodoudi, S. A New Method to Quantify Surface Urban Heat Island Intensity. Sci. Total Environ. 2018, 624, 262–272, doi:10.1016/j.scitotenv.2017.11.360.
    115. Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033, doi:10.1080/01431160600589179.
    116. Chen, J.; Yang, K.; Chen, S.; Yang, C.; Zhang, S.; He, L. Enhanced Normalized Difference Index for Impervious Surface Area Estimation at the Plateau Basin Scale. J. Appl. Remote Sens. 2019, 13, 1, doi:10.1117/1.JRS.13.016502.
    117. Li, F.; Yigitcanlar, T.; Nepal, M.; Nguyen, K.; Dur, F.; Li, W. Assessing Heat Vulnerability and Multidimensional Inequity: Lessons from Indexing the Performance of Australian Capital Cities. Sustain. Cities Soc. 2024, 115, 105875, doi:10.1016/j.scs.2024.105875.
    118. Woods, T.; McKeen, T.; Cunningham, A.; Priyatikanto, R.; Sorichetta, A.; Tatem, A.; Bondarenko, M. WorldPop High Resolution, Harmonised Annual Global Geospatial Covariates. Version 1.0 2025.
    119. He, C.; Ma, L.; Zhou, L.; Kan, H.; Zhang, Y.; Ma, W.; Chen, B. Exploring the Mechanisms of Heat Wave Vulnerability at the Urban Scale Based on the Application of Big Data and Artificial Societies. Environ. Int. 2019, 127, 573–583, doi:10.1016/j.envint.2019.01.057.
    120. Sun, R.; Wang, Y.; Chen, L. A Distributed Model for Quantifying Temporal-Spatial Patterns of Anthropogenic Heat Based on Energy Consumption. J. Clean. Prod. 2018, 170, 601–609, doi:10.1016/j.jclepro.2017.09.153.
    121. Krstic, N.; Yuchi, W.; Ho, H.C.; Walker, B.B.; Knudby, A.J.; Henderson, S.B. The Heat Exposure Integrated Deprivation Index (HEIDI): A Data-Driven Approach to Quantifying Neighborhood Risk during Extreme Hot Weather. Environ. Int. 2017, 109, 42–52, doi:10.1016/j.envint.2017.09.011.
    122. Qureshi, A.M.; Rachid, A. Heat Vulnerability Index Mapping: A Case Study of a Medium-Sized City (Amiens). Climate 2022, 10, 113, doi:10.3390/cli10080113.
    123. Shlens, J. A Tutorial on Principal Component Analysis 2014.
    124. Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900, doi:10.1175/BAMS-D-11-00019.1.
    125. Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Third Edition; 3rd ed.; CRC Press, 2019; ISBN 978-0-429-05272-9.
    126. How Create Fishnet Works—ArcGIS Pro | Documentation Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/data-management/how-create-fishnet-works.htm?utm_source=chatgpt.com (accessed on 5 June 2025).
    127. How Zonal Statistics Tools Work—ArcGIS Pro | Documentation Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-zonal-statistics-works.htm?utm_source=chatgpt.com (accessed on 5 June 2025).
    128. Liu, J.; Liu, B.; Wu, L.; Miao, H.; Liu, J.; Jiang, K.; Ding, H.; Gao, W.; Liu, T. Prediction of Land Use for the next 30 Years Using the PLUS Model’s Multi-Scenario Simulation in Guizhou Province, China. Sci. Rep. 2024, 14, 13143, doi:10.1038/s41598-024-64014-7.
    129. Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Patch-Generating Land Use Simulation Model V1.25 (PLUS) User’s Manual.
    130. Liang, X.; Liu, X.; Li, D.; Zhao, H.; Chen, G. Urban Growth Simulation by Incorporating Planning Policies into a CA-Based Future Land-Use Simulation Model. Int. J. Geogr. Inf. Sci. 2018, 32, 2294–2316, doi:10.1080/13658816.2018.1502441.
    131. Tutorial B:Simulating the Driven Effects of Planning Policy on LULC 20210813.
    132. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32, doi:10.1023/A:1010933404324.
    133. Pedregosa, F.; Pedregosa, F.; Varoquaux, G.; Varoquaux, G.; Org, N.; Gramfort, A.; Gramfort, A.; Michel, V.; Michel, V.; Fr, L.; et al. Scikit-Learn: Machine Learning in Python. Mach. Learn. PYTHON.
    134. Geopandas/Geopandas 2025.
    135. Rasterio/Rasterio 2025.
    136. Perry, M. Perrygeo/Python-Rasterstats 2025.
    137. Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95, doi:10.1109/MCSE.2007.55.
    138. Shah, F.H.; Raja, M.A.Z.; Al-Turjman, F.; Zaman, F.; Yang, X. Evolutionary Heuristic Computing Paradigm for 2D-DOA Estimation along Circular Array. Wirel. Commun. Mob. Comput. 2022, 2022, 1–14, doi:10.1155/2022/4851364.
    139. Genetic Algorithm and Direct Search Toolbox User’s Guide.
    140. Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban Greening to Cool Towns and Cities: A Systematic Review of the Empirical Evidence. Landsc. Urban Plan. 2010, 97, 147–155, doi:10.1016/j.landurbplan.2010.05.006.
    141. Di Napoli, C.; Pappenberger, F.; Cloke, H.L. Assessing Heat-Related Health Risk in Europe via the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2018, 62, 1155–1165, doi:10.1007/s00484-018-1518-2.
    142. He, C.; Ma, L.; Zhou, L.; Kan, H.; Zhang, Y.; Ma, W.; Chen, B. Exploring the Mechanisms of Heat Wave Vulnerability at the Urban Scale Based on the Application of Big Data and Artificial Societies. Environ. Int. 2019, 127, 573–583, doi:10.1016/j.envint.2019.01.057.
    143. Zou, Q.; Yang, J.; Zhang, Y.; Bai, Y.; Wang, J. Variation in Community Heat Vulnerability for Shenyang City under Local Climate Zone Perspective. Build. Environ. 2025, 267, 112242, doi:10.1016/j.buildenv.2024.112242.
    144. Alkhalidi, M.; Al-Dabbous, A.; Al-Dabbous, S.; Alzaid, D. Evaluating the Accuracy of the ERA5 Model in Predicting Wind Speeds Across Coastal and Offshore Regions. J. Mar. Sci. Eng. 2025, 13, 149, doi:10.3390/jmse13010149.
    145. Suo, C.; Sun, A.; Yan, C.; Cao, X.; Peng, K.; Tan, Y.; Yang, S.; Wei, Y.; Wang, G. Quality Assessment of ERA5 Wind Speed and Its Impact on Atmosphere Environment Using Radar Profiles along the Bohai Bay Coastline. Atmosphere 2024, 15, 1153, doi:10.3390/atmos15101153.
    146. Jian, H.; Yan, Z.; Fan, X.; Zhan, Q.; Xu, C.; Bei, W.; Xu, J.; Huang, M.; Du, X.; Zhu, J.; et al. A High Temporal Resolution Global Gridded Dataset of Human Thermal Stress Metrics. Sci. Data 2024, 11, 1116, doi:10.1038/s41597-024-03966-x.
    147. Nan, F.; Zeng, C.; Shen, H.; Lin, L. Calibration of Integrated Low-Cost Environmental Sensors for Urban Air Temperature Based on Machine Learning. Sensors 2025, 25, 3398, doi:10.3390/s25113398.
    148. Anjos, M.; Medeiros, D.; Castelhano, F.; Meier, F.; Silva, T.; Correia, E.; Lopes, A. LCZ4r Package R for Local Climate Zones and Urban Heat Islands. Sci. Rep. 2025, 15, 7710, doi:10.1038/s41598-025-92000-0.
    149. Li, F.; Yigitcanlar, T.; Nepal, M.; Thanh, K.N.; Dur, F. A Novel Urban Heat Vulnerability Analysis: Integrating Machine Learning and Remote Sensing for Enhanced Insights. Remote Sens. 2024, 16, 3032, doi:10.3390/rs16163032.

    QR CODE
    :::