跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林子誠
Tzu-Cheng Lin
論文名稱: 放射性核種傳輸之數值模擬驗證與應用
Numerical simulation of radionuclide transport of verification and application
指導教授: 陳瑞昇
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 105
中文關鍵詞: 核種傳輸多物種衰變鏈源衰變HYDROGEOCHEM4.5s
外文關鍵詞: nuclide transport, decay chain, source decay, HYDROGEOCHEM4.5s
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國際上高放射性廢棄物最終處置設施多位於深層地層,以阻絕放射性污染物進入人類生活圈,放射性核種傳輸數值模式常被使用作為處置設施功能安全評估工作之重要安全分析模式工具,幫助我們更清楚了解放射性核種的傳輸現象。在現有的解析模式中已發展可完整考慮在穩態均流場條件下之多核種衰變鏈傳輸解析解,因此將可以提供放射性核種傳輸數值模式之重要驗證參考依據,而數值模式則對處理非穩態、非均質、非等向地質環境之複雜流場較有彈性。本研究使用HYDROGEOCHEM 4.5s作為模擬在地下環境之放射性核種傳輸安全分析工具,並與前述解析解進行案例比較驗證,兩者在同時考慮源項衰變、吸附相污染物的衰變與多物種衰變鏈等影響皆有相當吻合結果,並進一步假設忽略吸附相衰變對核種傳輸結果的影響進行模擬探討,研究結果顯示不考慮吸附相衰變會高估母核種的濃度,並且低估子核種的濃度。未來在功能安全評估實務應用上,可以結合放射性核種傳輸解析解與數值模擬之優點以提升安全分析之可靠度。


    International final disposal of nuclear waste chooses the deep formation to block the radioactive contaminants from entering the human living area. Therefore radionuclide transport numerical model often used as an important tool for safety analysis performance assessment of disposal facilities. Existing analytical solutions has been developed that can consider under steady-state flow field of multi-species decay chain transmission. Therefore it can provide important method of radionuclide transport numerical model to verification. In this study, we use HYDROGEOCHEM 4.5s as a performance assessment tool to simulate radioactive nuclides underground transportation and verification with the aforementioned analytical solution. Consider includes the source decay, the adsorption phase decay of pollutants and the multi-species decay chain. The result of verification is quite consistent.

    目錄 摘要 I ABSTRACT II 目錄 III 表目錄 V 圖目錄 VI 符號表 VIII 一、 緒論 1 1-1 前言 1 1-2 文獻回顧 4 1-3 研究目的 7 二、 方法 8 2-1 數學模式: 8 2-2 HYDROGEOCHEM4.5S模式介紹 12 2-2-1 水流控制方程式: 13 2-2-2 化學反應傳輸控制方程式: 18 2-3 控制方程式假設及簡化 22 2-4 多物種衰變鏈 28 2-5 源衰變 29 三、 結果與討論 34 3-1 模式交互驗證 34 3-1-1 一維模式驗證 34 3-1-2 二維模式驗證 55 3-2 吸附相衰變影響 71 3-3 誤差來源 74 四、 結論與建議 78 五、 文獻 79 六、 附錄: 84 6-1 附錄A: 84 6-2 附錄B: 89  

    五、 文獻
    [1] IAEA, Safety Analysis Methodologies for Radioactive Waste Repository in Shallow Ground, Safety Series No. 64, Vienna, 1984.
    [2] IAEA, Design, Construction, Operation, Shutdown and Surveillance of Repositories for Solid Wastes in Shallow Ground, Safety Series No. 63, Vienna, 1984.
    [3] Miller, W. M., Chapman, N., McKinley, I., Alexander, R., and Smellie, J. A. T. Natural analogue studies in the geological disposal of radioactive wastes. Elsevier, 2011.
    [4] Miller, W., Alexander, R., Chapman, N., McKinley, J. C., and Smellie, J. A. T. (Eds.)Geological disposal of radioactive wastes and natural analogues (Vol. 2). Elsevier, 2000.
    [5] 劉尚志、張璞、焦自強,「高放射性廢料深層地質處置」,原子能委員會核能彙刊,第二十四卷,第五期,第2-33頁,1988。
    [6] IAEA, Model Formulation, Implementation and Data for Safety Assessment of Near Surface Disposal Facilities, ISAM/MDWG/WD01, 2000.
    [7] US NRC, A Performance Assessment Methodology for Low-Level Radioactive Waste Disposal Facilities: Recommendations of NRC’s Assessment Working Group, NUREG-1537, 2000.
    [8] SKB, Project SAFE, Radionuclide Release and Dose from the SFR Repository, SKB Rapport R-01-18, 2001.
    [9] UIC, International Nuclear Waste Disposal Concepts, Nuclear Issues Briefing Paper 49, 2003.
    [10] ElBaradei, M., Nuclear Power: A Look At the Future, Statements of the Director General in International Conference on Fifty Years of Nuclear Power: The Next Fifty Years, Moscow, Russia, June 27, 2004.
    [11] 台灣電力公司,用過核子燃料乾式貯存設施執照期滿後 之後續處置及替代作業規劃,2013。
    [12] 行政院原子能委員會放射性物料管理局,我國用過核子燃料最終處置 初步技術可行性評估報告,2010。
    [13] 劉振宇,地化模式應用於地下水中放射性核種遷移之研究,1994。
    [14] 林文勝,模擬放射性核種於混凝土障壁之反應化學傳輸,國立臺灣大學,碩士論文,1995。
    [15] 曹瑞軒,模擬低放射性廢棄物於工程障壁之水文地質化學傳輸,國立臺灣大學,碩士論文,2011。
    [16] Lin, W. S., Yu, C., Cheng, J. J., Kamboj, S., Gnanapragasam, E., Liu, C. W., and Li, M. H. Linking RESRAD-OFFSITE and HYDROGEOCHEM Model for Performance Assessment of Low-Level Radioactive Waste Disposal Facility-13429. WM Symposia, 1628 E. Southern Avenue, Suite 9-332, Tempe, AZ 85282 (United States), 2013.
    [17] Lin, W. S., Liu, C. W., Tsao, J. H., and Li, M. H. Modeling the Hydrogeochemical Transport of Radionuclides through Engineered Barriers System in the Proposed LLW Disposal Site of Taiwan-12082. In WM2012 Conference, 2012.
    [18] Iron Reduction and Radionuclide Immobilization: Kinetic, Thermodynamic and Hydrologic controls & Reaction-Based Modeling-Final Report, 2012.
    [19] Lester, D. H., Jansen, G., and Burkholder, H. C., Migration of radionuclide chains through an adsorbing medium, in Adsorption and ion exchange: Am. Inst.Chem. Eng., Symp. Series 71, 202-213, 1975.
    [20] Rogers, V. C., Migration of radionuclide chains in groundwater: Nucl. Techn., 40(3), 315-320, 1978.

    [21] Gureghian, A. B., and Jansen, G., LAYFLO: A one-dimensional semianalytical model for the migration of a three-member decay chain in a multilayered geologic medium: Tech. Rep. ONWI-466, Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, Ohio, 1983.
    [22] Cho, C. M., Convective transport of ammonium with nitrification in soil, Can. Jour. Soil Sci..51(3), 339-350, 1971.
    [23] Wagenet, R. J., Biggar, J. W., and Nielsen, D. R., Analytical solutions of miscible displacement equations describing the sequential microbiological transformations of urea, ammonium and nitrate: Research Rep. no. 6001, Dep. of Water Science and Engineering, Univ. California, 1976.
    [24] Harada, M., Chambre, P. L., Fogiia, M., Higashi, K., Iwamoto, F., Leung, D., Pigford, T. H., and Ting, D., Migration of radionuclides through sorbing media, analytical solutions--I: Rep. no. LBL-10500 (UC-I1), Lawrence Berkeley Laboratory, Univ. California, Berkeley, 1980.
    [25] Higashi, K., and PIGFORD, T. H, Analytical models for migration of radionuclides in geologic sorbing media. Journal of Nuclear Science and Technology, 17(9), 700-709, 1980.

    [26] Bateman, H., The solution of a system of differential equations occurring in the theory of radioactive transformations: Proc. Cambridge Philos. Soc., 15(2),423-427, 1910.
    [27] Burkholder, H. C., Cloninger, M. O., Baker, D. A., and Jansen, G., Incentives for partitioning high-level waste. Nuclear Technology, 31(2), 202-217, 1976.
    [28] Burkholder, H. C., Greenborg, J., Stottlemyre, J. A., Bradley, D. J., Raymond, J. R., and Serne, R. J, Waste isolation safety assessment program. Summary of FY-77 progress. Battelle Pacific Northwest Labs., Richland, 1977.
    [29] Van Genuchten, M. T, Convective-dispersive transport of solutes involved in sequential first-order decay reactions. Computers & Geosciences, 11(2), 129-147, 1985.
    [30] Chen, J. S., Liu, C. W., Liang, C. P., and Lai, K. H, Generalized analytical solutions to sequentially coupled multi-species advective–dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition. Journal of Hydrology, 456, 101-109, 2012.
    [31] 台電總管理處。2015年6月8號,取自:http://wapp4.taipower.com.tw/nsis/5/5_4.php?firstid=5&secondid=4&thirdid=3

    QR CODE
    :::