| 研究生: |
劉興晨 Xing-Chen Liu |
|---|---|
| 論文名稱: |
利用費奈爾反射結構提升多重鏡面立體投影系統之有效通道數量之研究 Increase of Effective Channel Numbers of Multi-segment 3-D Projection System with Else of Fresnel Reflector Structure |
| 指導教授: |
孫慶成
Ching-Cherng Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 小貓自泵相位共軛鏡 、相位共軛 、多重鏡面投影系統 、數位光學相位共軛 |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以小貓自泵相位共軛術為基礎應用於數位光學共軛系統,藉由Kitty-SPPCM之快速、穩定及大角度的容忍範圍等優點,建立出一套高效能的數位光學共軛系統。基於此數位光學相位共軛器設計出一套能重建光學資訊之三維實像投影系統。本文欲藉由費奈爾反射結構使系統有效通道數與共軛訊號效率提升。接著於模擬中探討多種系統參數對於共軛聚焦點之行為影響,於實驗中使用費奈爾反射結構並改善系統通道數量以及共軛訊號之表現。從實驗結果得知,我們成功地建立出一套三維實像投影之模型。
In this paper, the Kitty self-pumped phase conjugate mirror (Kitty-SPPCM) is applied to a digital optical phase conjugator (DOPC). The advantages of Kitty-SPPCM are fast, stable and with wide-angle tolerance. We apply the digital optical phase conjugator to a new-design 3-D real image projection system that can potentially scan 3-D points, which are originated from a fiber. To increase the effective channel numbers of the system, and the efficiency of the conjugate signal, we study to use a Fresnel reflective structure. In addition, we have developed a simulation model of the 3-D real image projection to analyze the conjugate -focal-point behavior for various system parameters. In the experiment, the channel numbers and the performance of conjugate signal have been observed enhanced by use of the Fresnel reflective structure. Then we have successfully demonstrated a useful model of 3-D real image projection.
[1] N. A. Dodgson, J. R. Moore, and S. R. Lang. “Multi-view autostereoscopic 3D display.” International Broadcasting Convention. Vol. 2. (1999).
[2] J. B. Eichenlaub, “Developments in autostereoscopic technology at Dimension Technologies Inc.” Proc. SPIE 1915,177–186 (1993).
[3] D. F. McAllister, Stereo Computer Graphics and Other True 3D Technologies, (Princeton University Press 1993).
[4] G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Observer-tracking autostereoscopic 3D display systems,’’ Proc. SPIE 3012, Stereoscopic Displays and Virtual Reality Systems IV, 187 (1997).
[5] R. Y. Tsai, C. H. Tsai, K. Lee, C. L. Wu, L. C. D. Lin, K. C. Huang, W. L. Hsu, C. S. Wu, C. F. Lu, J. C. Yang, and Y. C. Chen, “Challenge of 3D LCD displays,’’ Proc. SPIE 7329, 732903 (2009).
[6] S. W. Shih, J.H. Wang, C. H. Ting, and Y. P. Huang. “ Floating 3D Image for High Resolution Portable Device Using Integral Photography Theory.” SID Symposium Digest of Technical Papers (2015)
[7] T. Shibata, “Head mounted display”. Displays. 23 (1-2): 57–64. 1 April (2002).
[8] N. Cochrane, “VFX-1 Virtual Reality Helmet by Forte”. GameBytes. Retrieved 29 June (2011).
[9] P. J. Bos, and K. R. Koehler, “The pi-Cell: A Fast Liquid-Crystal Optical-Switching Device,” Mol. Cryst. Liquid Cryst. 113, 329-339 (1984).
[10] Y. J. Wu, Y. S. Jeng, P. C. Yeh, C. J. Hu, and W. M. Huang, “20.2: Stereoscopic 3D display using patterned retarder,” SID Symp. Dig. Tech. Papers. 39, 260-263 (2008).
[11] L. Bogaert, Y. Meuret, B. V. Giel, H. D. Smet, and H. Thienport, “Design of a compact projection display for the visualization of 3-D images using polarization sensitive eyeglasses,” J. Soc. Inf. Disp. 17, 603-609 (2009).
[12] A. J. Wood, C. R. Harris, “Comparing levels of crosstalk with red/cyan, blue/yellow, and green/magenta anaglyph 3D glasses ” , Proc. SPIE 7524, Stereoscopic Displays and Applications XXI, 75240Q (2010).
[13] A. J. Woods and T. Rourke, “Ghosting in anaglyphic stereoscopic images,” Proc. SPIE 5291, Stereoscopic Displays and Virtual Reality Systems XI, 354-365 (2004)
[14] F. Matsuura and N. Fujisawa, “Anaglyph stereo visualization by the use of a single image and depth information,” J. Vis. 11, 79-86 (2008).
[15] I. Ideses and L. Yaroslavsky, “New methods to produce high quality color anaglyphs for 3-D visualization,” International Conference Image Analysis and Recognition 3212, 273-280 (2004).
[16] F. Yaras, H. Kang, and L. Onural, “Circular holographic video display system” Opt.Express 19, 9147-9156 (2011).
[17] M. Kujawinska, T. Kozacki, C. Falldorf, T. Meeser, B. M. Hennelly, P. Garbat, W. Zaperty, M. Niemelä, G. Finke, M. Kowiel, and T. Naughton, “Multiwavefront digital holographic television,” Opt. Express 22, 2324-2336 (2014).
[18] J.-Y. Son and B. Javidi, “3-dimensional imaging systems based on multiview images,” J. Disp. Technol. 1(1), 125–140 (2005).
[19] T. Kozacki, G. Finke, P. Garbat, W. Zaperty, and M. Kujawińska, “Wide angle holographic display system with spatiotemporal multiplexing,” Opt. Express 20(25), 27473–27481 (2012).
[20] T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[21] T. Kozacki, M. Kujawińska, G. Finke, B. Hennelly, and N. Pandey, “Extended viewing angle holographic display system with tilted SLMs in a circular configuration,” Appl. Opt. 51, 1771-1780 (2012).
[22] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTiO3,” Appl. Phys. Lett. 9, 72-74 (1966).
[23] F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niabate,” Appl. Phys. Lett. 13, 223-225 (1968).
[24] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3.” Appl. Phys. Lett. 9, 72 (1966).
[25] F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223 (1968).
[26] F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389-3396 (1969).
[27] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals I. Steady state,” Ferroelectrics 22, 949-960 (1979).
[28] J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46-51 (1982).
[29] P .Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quant. Electronics 25, 484-519 (1989).
[30] A. Yariv and D. M. Pepper, “Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing,” Opt. Lett. 1, 16-18 (1977).
[31] M. Cronin-Golomb, J. O. White, B. Fischer, and A. Yariv, “Exact solution of a nonlinear model of four-wave mixing and phase conjugation,” Opt. Lett. 7, 313-315 (1982).
[32] R. A. Fisher, Optical Phase Conjugation (Academic Press, New York, 1983).
[33] C. C. Sun, R. H. Tsou, W. Shen, H. H. Chang J. Y. Chang, and M. W. Chang, “Shearing interferometer with a kitty self-pumped phase-conjugate mirror,” Appl. Optics 35, 1815-1819 (1996).
[34] W. C. Su, C. C. Sun, Y. C. Chen, and Y. Ouyang, “Duplication of phase key for random-phase-encrypted volume holograms,” Appl. Optics 43, 1728-1733 (2004).
[35] C. C. Sun, and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Optics 40, 1253-1260 (2001).
[36] C. C. Sun, S. Yeh, M. W. Chang, and K. Y. Hsu, “Optimal incident conditions for a cat-type self-pumped phase-conjugate mirror,” Appl. Optics 31, 5769-5772 (1992).
[37] B. Wang, C. C. Sun, W. C. Su, and A. E. Chiou, “Shift-tolerance property of an optical double-random phase-encoding encryption system,” Appl. Optics 39, 4788-4793 (2000).
[38] W. C. Su, Y. W. Chen, Y. Ouyang, C. C. Sun, and B. Wang, “Optical identification using a random phase mask,” Opt. Commun. 219, 117-123 (2003).
[39] C. C. Sun, W. C. Su, B. Wang, and A. E. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209-224 (2001).
[40] H. F. Yao, H. C. Kung, H. Y. Lee, C. C. Sun, T. C. Chen, C. C. Chang, Y. P. Tong, and J. Chen, “Ordinary polarized phase conjugator using the photovoltaic effect,” Opt. Commun. 184, 257-263 (2000).
[41] Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples”, Nat. Photonics 2, 110-115 (2008).
[42] I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett., 101(8), 081108 (2012).
[43] M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444-3455 (2010).
[44] Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[45] D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2, 728-735 (2015).
[46] T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Rep. 3, 1909 (2013).
[47] I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583-10590 (2012).
[48] C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723-20731 (2010).
[49] I. N. Papadopoulos, S. Farahi, C. Moser, and Demetri Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4, 260-270 (2016)
[50] K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657-661 (2012).
[51] Y. M. Wang and C. Yang, “Acoustic-assisted iterative wave form optimization for deep tissue focusing,” California Institute of Technology, US Patent US20120070817 A1 (2012).
[52] Y. M. Wang, and C. Yang, “Acoustic-assisted iterative wave form optimization for deep tissue focusing,” California Institute of Technology, US Patent US 20120070817 A1 (2012).
[53] D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948).
[54] E. N. Leith and J. Upatnieks, "Reconstructed wavefronts and communication theory," J. Opt. Soc. Am. 52, 1123-1128 (1962).
[55] E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53, 1377-1381 (1963).
[56] J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
[57] J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486-448 (1982).
[58] A. E. Chiou, T.-Y. Chang, and M. Khoshnevisar, “High-speed photorefractive phase conjugator with wide intensity dynamic range and wide field of view,” in OSA Annual Meeting, Vol. 15, 1990 OSA Technical Digest Series, (Optical Society of America, 1990), p. 40.
[59] A. E. Chiou, “Photorefractive phase-conjugate optics for image processing, trapping, and manipulation of microscopic objects,” Proc. IEEE 87, 2074-2085 (1999).
[60] I. M. Vellekoop, Controlling the propagation of light in disordered scattering media. (2008)
[61] C. Gu and P. Yeh, “Partial phase conjugation, fidelity, and reciprocity,” Opt. Commun. 107, 353-357 (1994).
[62] 陳瑋鑫,小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究,國立中央大學光電所碩士論文,中華民國102年。