跳到主要內容

簡易檢索 / 詳目顯示

研究生: 詹綉綾
Hsiu-Lin Chan
論文名稱: 新型灰階編碼於全像儲存系統之研究
指導教授: 歐陽盟
Mang Ou-Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 95
語文別: 中文
論文頁數: 84
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學儲存為現今主流的儲存技術,其中全像光學儲存更可將儲存
    容量提高至100GB,但由於全像光學儲存有過多雜訊源而限制其儲存
    容量,藉由編解碼過程可降低錯碼率提昇儲存容量,本論文研究全像
    儲存系統中的各種編碼方法,並提出一新型灰階編碼概念,不同於以
    往的文獻,是利用其忽略不用的二維偵測器之像素深度來做編碼。新
    型灰階編碼的優點為碼率R≈1,且可與其他編碼結合使用於全像儲
    存系統中。
    本實驗中建立一套測試錯碼率的系統,將RS 碼、平衡區塊碼和新型
    灰階編碼之編解碼程式撰寫完成,並測試了兩種編碼與未編碼的圖
    形,測試結果顯示,未編碼的資料錯碼率約為2.71×10−5;RS 碼和6:8
    平衡區塊碼經測試得到錯誤的位元數為零,計算出錯碼率為零。


    Optical Storage is the major of the current storage technology.
    Holographic data storage can enhance the storage capacity to 100GB. But,
    holographic data storage has excessively many noise to limit its storage
    capacity. Coding processing can reduce the BER to a sufficiently low
    level, and improve storage capacity. This thesis studies on holographic
    data storage system each code method, and proposes the concept of New
    gray-scale code. This method is different to the former literature, uses the
    pixel depth of the two-dimensional detector to make the code. The merit
    of New gray-scale code is that the code rate approaches one (R ),New
    gray-scale code also can be using in holographic data storage system with
    other code.
    ≈1
    This experiment establishes testing the wrong code rate system. The
    decoding programs of RS codes and Balance block codes and New
    gray-scale code be written. We also test two kind of codes and not the
    encoded graphs. The result showed uncode data wrong code rate
    approximately is , the error bits of the RS code and Balance
    block code both are zero (BER=0).

    中文摘要....................................................................................... I 英文摘要.................................... ................................................. II 誌謝............................................................................................... III 目錄............................................................................................... IV 圖目錄........................................................................................... VII 表目錄........................................................................................... IX 第一章 緒論............................................................................... 1 第二章 全像儲存之原理與系統............................................... 6 2.1 基本全像儲存原理.......................................................... 6 2.1.1 全像記錄與重建...................................................... 6 2.1.2 布拉格條件.............................................................. 8 2.2 全像儲存系統.................................................................. 14 2.3 全像儲存用雷射之需求.................................................. 20 2.3.1 雷射二極體激發之固態雷射…………………….. 20 2.3.2 半導體DFB 雷射…………………………………. 21 2.4 全像儲存用材料之需求……………………………….. 24 2.4.1 光折變和光聚合物材料…………………………. 27 第三章 編碼原理……………………………………………... 29 3.1 全像儲存系統編碼之原因…………………………….. 29 3.2 錯碼率和訊雜比……………………………………….. 31 3.3 錯誤訂正碼…………………………………………….. 34 3.3.1 區塊碼………………………….. ………………... 35 3.3.2 循環碼…………………………………………….. 37 3.3.3 里德-所羅門碼…………………………………… 42 3.3.4 交錯……………………………………………….. 46 3.4 調變碼………………………………………………….. 48 3.4.1 平衡區塊編碼…………………………………… 48 3.4.2 低通編碼………………………………………… 51 3.5 等化處理和偵測……………………………………….. 52 3.5.1 等化處理………………………………………… 52 3.5.2 偵測……………………………………………… 53 第四章 新型灰階編碼之研究與各種編碼之測試…………... 55 4.1 新型灰階編碼…………………………………………. 55 4.1.1 新型灰階編碼之編解碼規則…………………… 55 4.1.2 新型灰階編碼之優缺點…………………………. 58 4.2 各種編碼之測試………………………………………. 60 第五章 結論………………………………………………….. 65 參考文獻………………………………………………………... 66

    [1] L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data
    storage systems,” Proc. IEEE 92, 1231-1280 (2004).
    [2] P. J. van Heerden, “Theory of optical information storage in
    solids,” Appl. Opt. 2, 393-400 (1963).
    [3] D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948).
    [4] E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1962).
    [5] L. d’Auria, J. P. Huignard and E. Spitz, “Holographic read-write
    memory and capacity enhancement by 3-D storage,” IEEE Trans.
    Magn. MAG-9, 83-94 (1973).
    [6] H. Coufal, D. Psaltis and G. T. Sincerbox, Eds., Holographic data
    storage, Berlin, Germany: Springer-Verlag, 2000.
    [7] L. K. Anderson, “Holographic optical memory for bulk data
    storage,” Bell Lab. Record 45, 319-326 (1968).
    [8] W. C. Stewart et al., “An experimental read-write holographic
    memory,” RCA Rev. 34, 3-44 (1973).
    [9] N. Nishida, M. Sakaguchi and F. Saito, “Holographic coding plate:
    a new application of holographic memory,” Appl. Opt. 12,
    1663-1674 (1973).
    [10] W. H. Strehlow, R. L. Dennison and J. R. Packard, “Holographic
    data store,” J. Opt. Soc. Am. 64, 543-544 (1974).
    [11] L. d’Auria et al., “Experimental holographic read-write memory
    using 3-D storage,” Appl. Opt. 13, 808-818 (1974).
    [12] A. Bardos, “Wideband holographic recoder,” Appl. Opt. 13,
    832-840 (1974).
    [13] K. K. Sutherlin, J. P. Lauer and R. W. Olenick, “Holoscan: a
    commercial holographic ROM,” Appl. Opt. 13, 1345-1354 (1974).
    [14] Y. Tsunoda et al., “Holographic video disk: an alternative approach
    to optical videodisks,” Appl. Opt. 15, 1398-1403 (1976).
    [15] K. Kubota et al., “Holographic disk with high data transfer rate: its
    application to an audio response memory,” Appl. Opt. 19, 944-951
    (1980).
    [16] I. Sato et al., “Holographic memory system for Kanji character
    generation,” Appl. Opt. 28, 2634-2640 (1989).
    [17] J. Heanue, M. Bashaw and L. Hesselink, “Volume holographic
    storage and retrieval of digital data,” Science 265, 749-752 (1994).
    [18] G. Zhou et al., “A holographic memory product for fingerprint
    identification,” Opt. Photonics News 43, (1996).
    [19] I. Michael et al., “Compact holographic storage demonstrator with
    rapid access,” Appl. Opt. 35, 2375-2379 (1996).
    [20] M. P. Bernal et al., “A precision tester for studies of holographic
    optical storage materials and recording physics,” Appl. Opt. 35,
    2360-2374 (1996).
    [21] G. W. Burr et al., “Modulation coding for pixel-matched
    holographic data storage,” Opt. Lett. 22, 639-641 (1997).
    [22] R. M. Shelby et al., “Pixel-matched holographic data storage with
    megabit pages,” Opt. Lett. 22, 1509- (1997).
    [23] S. S. Orlov et al., “High-transfer-rate high-capacity holographic
    disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004).
    [24] “Holographic information storage system: today and future,” IEEE
    Trans. Magn. 43, 943-947 (2007).
    [25] J. Ashley et al., “Holographic data storage,” IBM J. Res. Develop.
    44, 341-368 (2000).
    [26] E. Hecht, Optics, 4th ed., Addison Wesley, 2002.
    [27] J. W. Goodman, Introduction to Fourier optics, 2nd ed.,
    McGraw-Hill Book Co., Inc., 2002.
    [28] R. J. Collier, C. B. Burckhardt and L. H. Lin, Optical holography,
    1st ed., Academic Press, 1971.
    [29] W. R. Klein, “Theoretical efficiency of Bragg devices,” Proc. IEEE
    54, 803 (1966).
    [30] S. Yin et al., “Wavelength-multiplexed holographic storage in a
    sensitive photorefractive crystal using a visible-light tunable
    diode-laser,” Opt. Commun. 101, 317-321 (1993).
    [31] C. B. Burckhardt, “Use of a random phase mask for the recording
    of Fourier transform holograms of data masks,” Appl. Opt. 9,
    695-700 (1970).
    [32] Y. Nakayama and M. Kato, “Diffuser with pseudorandom phase
    sequence,” J. Opt. Soc. Am. 69, 1367-1372 (1979).
    [33] J. H. McLeod, “The axicon: A new type of optical element,” J. Opt.
    Soc. Am. 44, 592-597 (1954).
    [34] M. P. Bernal et al., “Phase shifting element for optical information
    storing systems,” AM9-97-084, U. S. Patent (1998).
    [35] 林螢光,光電子學-原理、元件與應用,全華科技圖書,民國
    八十八年。
    [36] 施敏,半導體元件物理與製作技術,第二版,國立交通大學出
    版社,民國九十一年。
    [37] S. S. Orlov, “Overview of holographic recording materials for
    major system architectures in holographic data storage
    applications,” presented at the National Storage Industry
    Consortium Int. Workshop Holographic Data Storage, Nice, France,
    1999.
    [38] G. Burr et al., “Experimental evaluation of user capacity in
    holographic data storage system,” Appl. Opt. 37, 5431-5443
    (1998).
    [39] F. Ito, K. I. Kitayama and H. Oguri, “Compensation of fiber
    holographic image distortion caused by intrasignal photorefractive
    coupling by using a phase conjugate mirror,” Opt. Lett. 17,
    215-217 (1992).
    [40] M. C. Bashaw, A. Aharoni and L. Hesselink, “Alleviation of image
    distortion due to striations in a photorefractive medium using a
    phase-conjugated reference wave,” Opt. Lett. 17, 1149-1151
    (1992).
    [41] F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for
    holographic memory systems,” Opt. Lett. 21, 896-899 (1996).
    [42] A. Yariv et al., “Holographic fixing, readout, and storage dynamics
    in photorefractive materials,” Opt. Lett. 20, 1334-1336 (1995).
    [43] E. Kratzig and R. Orlowski, Appl. Phys. 67, 133 (1978).
    [44] J. F. Heanue et al., “Digital holographic storage system
    incorporating thermal fixing in lithium niobate,” Opt. Lett. 21,
    1615-1617 (1996).
    [45] H. Gunther et al., “Two-color holography in reduced nearstoichiometric
    lithium niobate,” Appl. Opt. 37, 7611-7623 (1998).
    [46] D. A. Waldman, H. Y. S. Li, and M. G. Horner, “Volume
    shrinkage in slant fringe gratings of a cationic ring-opening volume
    hologram recording material,” J. Imag. Sci. Technol. 41, 497-514
    (1997).
    [47] L. Dhar et al., “Holographic storage of multiple high-capacity
    digital data pages in thick photopolymer systems,” Opt. Lett. 23,
    1710-1722 (1998).
    [48] C. Gu and F. Dai, “Cross-talk noise reduction in volume
    holographic storage with extended recording reference,” Opt. Lett.
    20, 2336-2338 (1995).
    [49] J. F. Heanue, K. Gurkan, and L. Hesselink, “Signal detection for
    page-access optical memories with intersymbol interference,” Appl.
    Opt. 35, 2431–2438 (1996).
    [50] M. A. Neifeld and M. McDonald, “Technique for controlling
    cross-talk noise in volume holography,” Opt. Lett. 21, 1298-1300
    (1996).
    [51] F. Dai and C. Gu, “Effect of Gaussian references on cross-talk
    noise reduction in volume holographic memory,” Opt. Lett. 22,
    1802-1804 (1997).
    [52] M. A. Neifeld, K. M. Chugg, and B. M. King, “Parallel data
    detection in page-oriented optical memory,” Opt. Lett. 21,
    1481–1483 (1996).
    [53] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Channel codes for
    digital holographic data storage,” J. Opt. Soc. Am. A 12,
    2432–2439 (1995).
    [54] W. C. Chou and M. A. Neifeld, “Interleaving and error correction
    in volume holographic memory systems,” Appl. Opt. 37,
    6951-6968 (1998).
    [55] M. Hassner, U. Schwiegelshohn and S. Winograd, “On-the-fly
    error correction in data storage channels,” IEEE Trans. Magn. 31,
    1149-1154 (1995).
    [56] V. K. Polyanskii and P. V. Polyanskii, “Holographic associative
    memories with a true brightness tone rendering,” Opt. Eng. 34,
    1079-1087 (1995).
    [57] J. D. Roberts et al., “Analysis of error-correction constraints in an
    optical disk,” Appl. Opt. 35, 3915-3924 (1996).
    [58] B. J. Goertzen and P. A. Mitkas, “Error-correcting code for volume
    holographic storage of a relational database,” Opt. Lett. 20,
    1655-1657 (1995).
    [59] B. J. Goertzen and P. A. Mitkas, “Volume holographic storage for
    large relational databases,” Opt. Eng. 35, 1847-1853 (1996).
    [60] M. A. Neifeld and M. McDonald, “Error correction for increasing
    the usable capacity of photorefractive memories,” Opt. Lett. 19,
    1483-1485 (1994).
    [61] M. A. Neifeld and J. D. Hayes, “Error-correction schemes for
    volume optical memories,” Appl. Opt. 34, 8183-8191 (1995).
    [62] M. A. Neifeld, “Multiple-error-correcting codes for improving the
    performance of optical matrix–vector processors,” Opt. Lett. 20,
    758-760 (1995).
    [63] E. Hwang et al., “Three-dimensional error correction schemes for
    holographic data storage,” Jpn. J. Appl. Phy. 44, 3529–3533
    (2005).
    [64] H. Pishro-Nik et al., “Low-density parity-check codes for volume
    holographic memory systems,” Appl. Opt. 42, 861-870 (2003).
    [65] H. Hayashi and K. Kimura, “Low-density parity-check coding for
    holographic data storage,” Jpn J. Appl. Phy. 44, 3495–3498 (2005).
    [66] L. D. Ramamoorthy and B. V. K. V. Kumar, “Two-dimensional
    equalization and error correction using low density parity check
    codes for holographic data storage,” Jpn. J. Appl. Phy. 45,
    1305-1310 (2006).
    [67] H. Pishro-Nik, F. Fekri, “Irregular repeat-accumulate codes for
    volume holographic memory systems,” Appl. Opt. 43, 5222-5227
    (2004).
    [68] M. Blaum, J. Bruck and A. Vardy, “Interleaving schemes for
    multidimensional cluster errors,” IEEE Trans. Inform. Theory 44,
    730-743 (1998).
    [69] T. Etzion and A. Vardy, “Two-dimensional interleaving schemes
    with repetitions: Constructions and bounds,” IEEE Trans. Inform.
    Theory 48, 428-457 (2002).
    [70] A. Vardy et al., “Conservative arrays: Multidimensional
    modulation codes for holographic recording,” IEEE Trans. Inform.
    Theory 42, 227-230 (1996).
    [71] T. Kume et al., “Digital holographic memory using twodimensional
    modulation code,” Jpn. J. Appl. Phys. 40, 1732-1736
    (2001).
    [72] T. Kume et al., “Modulation coding for digital holographic
    memory using strontium barium niobate,” Jpn. J. Appl. Phys. 40,
    2296-2300 (2001).
    [73] E. Hwang et al., “A new efficient error correctible modulation code
    for holographic data storage,” Jpn. J. Appl. Phys. 41, 1763-1766
    (2002).
    [74] R. John, J. Joseph and K. Singh, “An input-data page modulation
    scheme for content-addressable holographic digital data
    storage,” Opt. Commun. 249, 387-395 (2005).
    [75] R. John, J. Joseph and K. Singh, “A new balanced modulation code
    for a phase-image-based holographic data storage system,” J. Opt.
    A-Pure and Appl. Opt. 7, 391-395 (2005).
    [76] B. M. King and M. A. Neifeld, “Sparse modulation coding for
    increased capacity in volume holographic storage,” Appl. Opt. 39,
    6681-6688 (2000).
    [77] A. Suto and E. Lorincz, “Optimisation of data density in Fourier
    holographic system using spatial filtering and sparse modulation
    coding,” Optik 115, 541-546 (2004).
    [78] J. Q. Trelewicz, “Architecture for trellis-coded modulation in page
    memories,” Electron. Lett. 36, 144-145 (2000).
    [79] D. E. Pansatiankul and A. A. Sawchuk, “Variable-length
    two-dimensional modulation coding for imaging page-oriented
    optical data storage systems,” Appl. Opt. 42, 5319-5333 (2003).
    [80] E. Hwang et al., “A new two-dimensional pseudo-random
    modulation code for holographic data storage,” Jpn. J. Appl. Phys.
    42, 1010-1013 (2003).
    [81] D. E. Pansatiankul and A. A. Sawchuk, “Fixed-length
    two-dimensional modulation coding for imaging page-oriented
    optical data storage systems,” Appl. Opt. 42, 275-290 (2003).
    [82] J. Lee and J. Lee, “DC-free coding of run-length-limited codes for
    multi-level optical recording systems,” Jpn. J. Appl. Phys. 45,
    1097-1100 (2006).
    [83] J. J. Ashley and B. H. Marcus, “Two-dimensional low-pass
    filtering codes,” IEEE Trans. Commun. 46, 724-727 (1998).
    [84] B. P. Bernal et al., “Balancing inter-pixel crosstalk and detector
    noise to optimize areal density in holographic storage systems,”
    Appl. Opt. 37, 5377-5385 (1998).
    [85] K. M. Chugg, X. P. Chen and M. A. Neifeld, “Two-dimensional
    equalization in coherent and incoherent page-oriented optical
    memory,” J. Opt. Soc. Am. A 16, 549-562 (1999).
    [86] A. S. Choi and W. S. Baek, “Equalization for digital holographic
    data storage,” Jpn. J. Appl. Phys. 40, 1737-1740 (2001).
    [87] V. Vadde and B. V. K. V. Kumar, “Channel modeling and
    estimation for intrapage equalization in pixel-matched volume
    holographic data storage,” Appl. Opt. 38, 4374-4386 (1999).
    [88] M. Keskinoz and B. V. K. V. Kumar, “Discrete magnitude-squared
    channel modeling, equalization, and detection for volume
    holographic storage channels,” Appl. Opt. 43, 1368-1378 (2004).
    [89] W. X. Shang, Q. S. He and G. F. Jin, “Nonlinear blind equalization
    for volume holographic data storage,” Chinese Phys. Lett. 21,
    1741-1744 (2004).
    [90] A. He and G. Mathew, “Nonlinear equalization for holographic
    data storage systems,” Appl. Opt. 45, 2731-2741 (2006).
    [91] M. Keskinoz, “Iterative soft-minimum mean-square error
    equalization for digital nonlinear page-oriented memories,” Appl.
    Opt. 45, 7401-7409 (2006).
    [92] M. Keskinoz and B. V. K. V. Kumar, “Application of linear
    minimum mean-squared-error equalization for volume holographic
    data storage,” Appl. Opt. 38, 4387-4393 (1999).
    [93] S. Nabavi, B. V. K. V. Kumar, “Application of linear and nonlinear
    equalization methods for holographic data storage,” Jpn. J. Appl.
    Phys. 45, 1079-1083 (2006).
    [94] A. He and G. Mathew, “Application of nonlinear minimum mean
    square error equalization for holographic data storage,” Jpn. J.
    Appl. Phys. 45, 1290-1292 (2006).
    [95] B. H. Olson and S. C. Esener, “Partial response precoding for
    parallel-readout optical memories,” Opt. Lett. 19, 661-663 (1994).
    [96] X. Chen, K. M. Chugg, and M. A. Neifeld, “Near-optimal parallel
    distributed data detection for page-oriented optical memories,”
    IEEE J. Selected Topics in Quantum Electronics 4, 866-879
    (1998).
    [97] B. M. King and M. A. Neifeld, “Parallel detection algorithm for
    page-oriented optical memories,” Appl. Opt. 37, 6275-6298 (1998).
    [98] G. Maire, G. Pauliat, and G. Roosen, “Homodyne detection
    readout for bit-oriented holographic memories,” Opt. Lett. 31,
    175-177 (2006).
    [99] C. Gu, F. Dai and J. Hong, “Statistics of both optical and electrical
    noise in digital volume holographic data storage,” Electron. Lett.
    32, 1400-1402 (1996).
    [100] C. Gu, G. Sornat and J. Hong, “Bit-error rate and statistics of
    complex amplitude noise in holographic data storage,” Opt. Lett.
    21, 1070-1072 (1996).
    [101] G. W. Burr et al., “Noise reduction of page-oriented data storage
    by inverse filtering during recording,” Opt. Lett. 23, 289-291
    (1998).
    [102] J. W. Goodman, Statistical optics, NJ: Wiley, New York, (1985).
    [103] 林銀議,數位通訊原理−編碼與消息理論,一版,五南書局,
    民國九十四年。
    [104] 余兆棠、林瑞源和繆紹綱譯,無線通訊與網路,臺灣培生教育
    出版,民國九十一年。
    [105] S. Lin and D. J. Costello, Error Control Coding: Fundamentals
    and Applications, Prentice Hall, NJ (2004).
    [106] S. B. Wicker, Error control systems for digital communication and
    storage, Prentice Hall, NJ (1995).
    [107] C. Shannon, “A mathematical theory of communication,” Bell
    System Technical Journal 27, 379-423, 626-656 (1948).
    [108] H. Sasaki, Y. Fainman, S. H. Lee, “Gray-scale fidelity in volume
    multiplexed photorefractive memory,” Opt. Lett. 18, 1358-1360
    (1993).
    [109] S. Q. Tao et al., “Quantitative study of the gray-scale fidelity of
    volume holographic images,” Appl. Opt. 38, 3767-3777 (1999).
    [110] G. W. Burr et al., “Gray-scale data pages for digital holographic
    data storage,” Opt. Lett. 23, 1218-1220 (1998).
    [111] B. M. King, G. W. Burr and M. A. Neifeld, “Experimental
    demonstration of gray-scale sparse modulation codes in volume
    holographic storage,” Appl. Opt. 42, 2546-2559 (2003).

    QR CODE
    :::