| 研究生: |
白禮智 Li-Chih Pai |
|---|---|
| 論文名稱: |
覆晶式Ka頻段超外差發射機前端電路之研製 Implementation of Flip-Chip Superheterodyne Transmitter Front-End Circuits for Ka Band Applications |
| 指導教授: |
邱煥凱
Hwann-Kaeo Chiou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 毫米波發射機 、次諧波混頻器 、功率放大器 |
| 外文關鍵詞: | subharmonic mixer, millimeter-wave transmitter, power amplifier |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究內容為毫米波覆晶式射頻前端發射機電路設計,電路應用的系統為Ka頻段的區域多點分散式服務系統(local multipoint distribution service)。利用WIN 0.15μm pHEMT製程研製,包含共面波導功率放大器、寬頻功率放大器、次諧波二極體混頻器以及次諧波電阻性混頻器設計。
電路經量測,共面波導功率放大器的增益為14.5 dB,輸入輸出返回損耗分別為8dB與5.4dB,1dB壓縮點輸出功率與附加功率效率為20.4 dBm與 14.1 %,最大輸出功率與功率效率增益為22.3 dBm與 19.3 %;寬頻功率放大器頻寬為19GHz至31GHz,在頻率為27.1GHz時,增益為21.6 dB,輸入輸出返回損耗分別為10dB與4dB,1 dB壓縮點輸出功率與附加功率效率為21dBm與 18.6 %,最大輸出功率與功率效率增益為23.1 dBm與 21.9 %;次諧波二極體混頻器的轉換損耗(conversion loss)在昇頻模式中為10.5dB,輸入1dB壓縮點-3dBm;而在降頻模式中為11.1dB, 輸入1dB壓縮點為1dBm;在昇頻模式中,LO-RF隔離度在所操作的頻段中皆大於19dB,而IF-RF隔離度則大於13dB;在降頻模式中,LO-IF隔離度在所操作頻段皆大於14dB,RF-IF隔離度則大於38dB;次諧波電阻性混頻器的轉換損耗為10.4dB,輸入1dB壓縮點1dBm,LO-RF隔離度在所操作的頻段中皆大於30dB,而IF-RF隔離度則大於16dB。
Millimeter-wave flip-chip RF front-end transmitter circuits design are the main
research of this thesis, which apply to Ka band local multipoint distribution
service(LMDS). These Ka band circuits are implemented with WIN 0.15μm pHEMT,
including coplanar waveguide power amplifier, broadband power amplifier,
sub-harmonic diode and resistive mixer designs.
The measured results of the circuit are illustrated as follows; for the coplanar
waveguide power amplifier , gain is 14.5 dB, input and output return loss are 8dB and
5.4dB, the output power and power added efficiency at the 1-dB gain compression
point are 20.4dBm and 14.1%, the maximum output power and power added
efficiency are 22.3dBm and 19.3% ; for the broadband power amplifier , bandwidth is
19GHz to 31GHz, gain is 21.6 dB at 27.1GHz, input and output return loss are 10dB
and 4dB, the output power and power added efficiency at the 1-dB gain compression
point are 21dBm and 18.6%, the maximum output power and power added efficiency
are 21.3dBm and 21.9%; for the sub-harmonic diode mixer, operating at up-converter,
the conversion loss is 10.5dB, input power at the 1-dB gain compression point is
-3dBm; operating at down-converter, the conversion loss is 11.1dB, input power at the
1-dB gain compression point is 1dBm; the LO-RF and IF-RF isolation are greater than
19dB and 13dB at up-converter operation, the LO-IF and RF-IF isolation are greater
than 14dB and 38dB at down-converter operation; for the sub-harmonic resistive
mixer, the conversion loss is 10.4 dB, input power at the 1-dB gain compression point
is 1dBm, the LO-RF and IF-RF isolation are greater than 30dB and 16dB
[1].B, Razavi., “RF microelectronics,” Prentice Hall, 1998
[2].N. S. Rainee, “Coplanar Waveguide Circuit, Components, and System,”
Wiley-Interscience, A John Wiley & Sons, Inc.,Publication
[3].D. Robertson, S. Lucyszyn, “RFIC and MMIC design and technology,”
London, Institution of Electrical Engineers, 2001
[4].S. A. Maas, “The RF and microwave circuit design cookbook,” Artech
House, 1998
[5].W. Heinrich, A. Jentzsch, G. Baumann, “Millimeter-Wave Characteristics of
Flip-Chip Interconnects for Multichip Modeules,” IEEE Trans. Microwave
Theory and Tech, vol. 46, No.12, Dec. 1998
[6].A. Tessmann, M. Riessle, S. Kudszus, H. Massler, “A flip-chip packaged
coplanar 94 GHz amplifier module with efficient suppression of parasitic
substrate effects,” IEEE Microwave and Wireless Components Letters,
vol.14 Issue 4, pp. 145-147, April 2004
[7].M. Szymanowski, S. S. Naeini, “Characterization of a flip-chip
interconnect at frequencies up to 30 GHz,” Electrical and Computer
Engineering, Canadian Conference, vol. 2, pp. 784 – 787, March 7-10, 2000
[8].A. Tessmann, W. H. Haydl, T. V. Kerssenbrock, P. Heide, S. Kudszus,
“Suppression of parasitic substrate modes in flip-chip packaged coplanar W-
band amplifier MMICs,” IEEE MTT-S IMS Digest, vol. 1, pp. 543 – 546, May
20-25, 2001
[9].T. Hirose, K. Makiyama, K Ono, T. M. Shimura, S. Aoki, Y. Ohashi, S.
Yokokawa, Y. Watanabe, “A flip-chip MMIC design with coplanar waveguide
transmission line in the W-band,” IEEE Trans. Microwave Theory and Tech.,
vol 46, Issue 12, pp. 2276 – 2282, Dec. 1998
[10].K. Chang, I. Bahl, V. Nair, “RF and Microwave Circuit and Component
Design for Wireless Systems,” John Wiley, New York, December 2001
[11].I. Bahl, P. Bhartia, “Microwave Solid State Circuit Design,” John Wiley
& Sons, Inc.,Publication, 2003
[12].J. Scheilenberg, D. K. Hien, “A push-pull power MMIC operating at K/Ka-
band frequencies” IEEE MTT-S IMS Digest, vol. 3, pp.971 – 974, June 13-
19, 1999
[13].A. Bessemoulin, H. Massler, A. Hulsmann, M. Schlechtweg, “1-Watt Ka-band
coplanar high power MMIC amplifiers using 0.15-μm GaAs PHEMTs,” GaAs IC
Symposium, 22nd Annual, pp. 227 – 230, Nov. 5-8, 2000
[14].B. Y. Banyamin, M. Berwick, “Analysis of the performance of four-
cascaded single-stage distributed amplifiers,” IEEE Trans. Microwave
Theory and Tech., vol. 48 , Issue 12 , Dec. 2000
[15].T. Quach, P. Watson, W. Okamura, E. Kaneshiro, G. A. Aitken, T. Block, J.
Eldredge, T. Jenkins, L. Kehias, A. Oki, D. Sawdai, R. Welch, R. Worley,
“Broadband Class-E Power Amplifier for Space Radar Application,” GaAs IC
Symposium Digest, 23rd Annual, pp. 209 – 213, Oct. 21-24, 2001
[16].N. L. Wang, W. J. Ho, J. A. Higgins, “4W, 7-12GHz, Compact CB HBT MMIC
Power Amplifier,” IEEE GaAs IC Symposium Digest, 14th Annual, pp. 301-
304, Oct. 4-7, 1992
[17].K. Johnson, A. Lum, S. Nelson, E. Reese, K. Salzman, “High efficiency
broadband power amplifier MMIC,” IEEE Microwave and Millimeter-Wave
Monolithic Circuits Symposium Digest, pp.43-45, June 1-3, 1992
[18].Y. G.. Kim, S. J. Maeng, J. H. Lee, C. S. Park, “A PHEMT MMIC broad-band
power amplifier for LMDS,” IEEE Radio and Wireless Conference, RAWCON
98, Aug. 9-12 , 1998
[19].S. A. Maas, “A GaAs MESFET Mixer with Very Low Intermodulation,” IEEE
Trans. Microwave Theory and Tech., vol. 35, Issue 4, pp.425–429, Apr
1987
[20].K. L. Deng, Y. B. Wu, Y. L. Tang, H. Wang, C. H. Chen, “Broadband
monolithic GaAs-based HEMT diode mixers,” Microwave Conference, Asia-
Pacific 3-6, pp.1135-1138, Dec. 2000
[21].M. W. Chapman, S. Raman, “A 60-GHz uniplanar MMIC 4/spl times/
subharmonic mixer,” IEEE Trans. Microwave Theory and Tech., vol. 50,
Issue 11, pp.2580-2588, Nov. 2002
[22].L. Verweyen, H. Massler, M. Neumann, U. Schaper, W. H. Haydl, “Coplanar
integrated mixers for 77-GHz automotive applications,” IEEE Microwave
and Guided Wave Letters, vol. 8, Issue 1, pp.38-40, Jan. 1998
[23].H. Kanoniuk, T. H. Chu, “A 78-114 GHz monolithic subharmonically pumped
GaAs-based HEMT diode mixer,” IEEE Microwave and Wireless Components
Letters, vol. 12, Issue 6, pp. 209 – 211, June 2002
[24].K. S. Ang, “A millimeter-wave monolithic sub-harmonically pumped
resistive mixer,” APMC Digest, vol. 2, pp. 222 -225, 30 Nov.-3, Dec. 1999
[25].H. Zirath, “A subharmonically pumped resistive dual HEMT mixer,” IEEE
MTT-S IMS Digest, pp. 875-878, June 1991
[26].M. Kimishima, T. Ataka, H. Okabe, Virk, “A farmily of Q, V and W-band
monololithic resistive mixer,” IEEE MTT-S IMS Digest, pp.115-118, June
2001
[27].M. F. Lei, P. S. Wu, T. W. Huang, H. Wang, “Design and analysis of a
miniature W-band mmic subharmonically pumped resistive mixer,” IEEE MTT-
S IMS Digest, 2004
[28].M. D. Biedenbender., J.L. Lee, K.L. Tan, P.H. Liu, A. Freudenthal, D.C.
Streit, G. Luong, R. Lai, M.V. Aust, B. Allen, T. S. Lin, H. C. Yen, “A
power HEMT production process for high-efficiency Ka-band MMIC power
amplifiers,” GaAs IC Symposium Technical Digest, 15th Annual, Oct. 10-
13, 1993