跳到主要內容

簡易檢索 / 詳目顯示

研究生: 柯漢良
Han-Liang Ko
論文名稱: 動態三超音波感測器融合視覺系統應用於行走機器人
Dynamic Tri-ultrasonic Transducer Fused with Vision System for a Mobile Robot
指導教授: 鍾鴻源
Hung-yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 56
中文關鍵詞: 超音波感測器融合視覺行走機器人分類定位
外文關鍵詞: Ultrasonic Transducer, Fused, Vision, Mobile Robot, Classification, Localization
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在行走機器人的領域裡,視覺感測器扮演著重要的角色,而一個智慧型的感測器系統必須滿足兩個需求:(1)正確地分辨出反射物的形狀(如平面,牆沿及牆角) (2)精準地對反射物定位(包括距離及方位)。因此,在本篇論文中,我們提出了一個新的動態三超音波感測器融合視覺的量測系統,其主要的目的可以正確地識別反射物並對它們做正確地定位。其中,我們提出一套新的辨識規則,使量測系統能更準確地對反射物做分類。並且,以一種新的動態估測方法進行對反射物做正確地定位。



    Abstract ……………………………………………………………… Ⅰ Table of Content …………………………………………………… Ⅱ List of Figures …………………………………………………… Ⅴ List of Tables ……………………………………………………… Ⅶ Chapter 1: Introduction …………………………………………… 1 1-1 Background ……………………………………………………… 1 1-2 Motivation ……………………………………………………… 1 1-3 Organization …………………………………………………… 2 Chapter 2: Survey of Ultrasonic and Vision Measuring Systems ………………………………………………………………… 3 2-1 Introduction …………………………………………………… 3 2-2 One Ultrasonic Measuring Systems ………………………… 3 2-3 Two Ultrasonic Measuring Systems ………………………… 5 2-4 Three Ultrasonic Measuring Systems ……………………… 8 2-5 Five Ultrasonic Measuring Systems …………………………15 2-6 Measuring Systems of Ultrasonic Transducers with CCD Cameras …………………………………………………………………17 2-7 Summaries of the Measuring Systems ……………………… 17 Chapter 3: Basic Principles of Ultrasonic Sensors and CCD Cameras …………………………………………………………………19 3-1 Introduction …………………………………………………… 19 3-2 The Basic Principles of Ultrasonic Sensors …………… 19 3-2-1 The physical model of ultrasound ……………………… 19 3-2-2 The conventional ultrasonic ranging systems …………20 3-2-3 The model of the environment …………………………… 23 3-3 The Principles of Image Processing ……………………… 23 3-3-1 The features of the image ……………………………… 23 3-3-2 The image enhancement …………………………………… 24 3-3-3 The image segmentation …………………………………… 25 Chapter 4: Design of the Dynamic Tri-ultrasonic Transducer Fused with Vision System ………………………………………… 27 4-1 Introduction …………………………………………………… 27 4-2 The Principles of the Dynamic Tri-ultrasonic Transducer Fused with Vision System ………………………………………… 27 4-2-1 The Principle of the Shape Discriminator …………… 27 4-2-2 The Principle of the Inclination Angle Detector … 30 4-3 The Design of the Dynamic Tri-ultrasonic Transducer Fused with Vision System …………………………………………………32 4-3-1 Classification Step …………………………………………32 4-3-2 Localization Step ……………………………………………35 4-4 The Operation Procedures of the Dynamic Tri-ultrasonic Transducer Fused with Vision System ………………………… 37 Chapter 5: Hardware and Software Design ………………………38 5-1 Introduction …………………………………………………… 38 5-2 Ultrasonic Transducer ……………………………………… 39 5-3 Ultrasonic Ranging Module ………………………………… 40 5-4 Data Acquisition Card (PCI-1712) ………………………… 42 5-5 CCD Camera ……………………………………………………… 43 5-6 Frame Grabber ………………………………………………… 43 5-7 Stepper motor and Driver …………………………………… 43 5-8 Personal Computer …………………………………………… 44 Chapter 6: Experimental Results and Discussion …………… 45 6-1 Introduction …………………………………………………… 45 6-2 Experiments Verifications ………………………………… 45 6-2-1 Classification ………………………………………… 45 6-2-2 Localization …………………………………………… 51 6-3 Discussion ……………………………………………………… 52 Chapter 7: Conclusions and Recommendations ………………… 53 References …………………………………….…………………… 54 Appendix ……………………………………………………………… 56

    [1] J. W. Choi, S. H. Kwon, H. Y. Lee, S. G. Lee, “Navigation Strategy of an Intelligent Mobile Robot Using Fuzzy Logic,” IEEE International Conference on Computational Intelligence, vol.1, pp. 602-605, 1998.
    [2] B. N. Kim, O. S. Kwon, K. H. Kim, E. H. Lee, S. H. Hong, “A Study on Path Planning for Mobile Robot Based on Fuzzy Logic Controller,” TENCON 99. Proceedings of the IEEE Region 10 Conference, vol.2, pp. 1002-1005, 1999.
    [3] K. T. Song and C. C. Chang, “Ultrasonic Sensor Data Fusion for Environment Recognition,” IEEE International Conference on Intelligent Robots and Systems, vol. 1, pp. 384-390, July 1993.
    [4] F. J. Toledo, J. D. Luis, L. M. Tomas, M. A. Zamora, H. Martinez, “Map Building with Ultrasonic Sensors of Indoor Environments Using Neural Networks,” IEEE International Conference on Systems, Man, and Cybernetics, vol.2, pp. 920-925, 2000.
    [5] J. Urena, M. Mazo, J. J. Garcia, A. Hernandez, and E. Bueno, “Classification of Reflectors with an Ultrasonic Sensor for Mobile Robot Applications,” Robotics and Autonomous Systems, vol.29, pp. 269-279, Dec. 1999.
    [6] J. J. Lin, H. L. Ko, H. Y. Chung, “A Dynamic Tri-ultrasonic Transducer System Based on Fuzzy Control,” Proceedings of the 17th National Conference on Mechanical Engineering, vol. 2, pp. 247-253, Dec. 2000.
    [7] R. Kuc, “A Spatial Sampling Criterion for Sonar Obstacle Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 686-690, July 1990.
    [8] H. Peremans, “A Maximum Likelihood Algorithm for Solving the Correspondence Problem in Tri-aural Perception,” IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 485-492, 1994.
    [9] L. Kleeman and R. Kuc, ”An Optimal Sonar Array for Target Localization and Classification,” IEEE International Conference on Robotics and Automation, vol.4, pp. 3130-3135, 1994.
    [10] B. Barshan, and R. Kuc, “Differentiating Sonar Reflections from Corners and Planes by Employing an Intelligent Sensor,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 6, pp. 560-569, June 1990.
    [11] O. Bozma and R. Kuc, “Building a Sonar Map in a Specular Environment Using a Single Mobile Sensor,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.13, no. 12, pp. 1260-1269, Dec. 1991.
    [12] M. Yang, S. L. Hill, and J. O. Gray, “Localization of Plane Reflectors Using a Wide-Beamwidth Ultrasound Transducer Arrangement,” IEEE Trans. on Instrumentation and Measurement, vol. 46, no.3, pp. 711-716, June 1997.
    [13] M. L. Hong and L. Kleeman, “Ultrasonic Classification and Location of 3D Room Features Using Maximum Likelihood Estimation-Part I,” Robotica, vol. 15, pp. 483-491, 1997.
    [14] H. Peremans, K. Audenaert, and J. M. Van Campenhout, “A High-Resolution Sensor Based on Tri-aural Perception,” IEEE Trans. on Robotics and Automation, vol. 9, no. 1, pp. 36-48, Feb. 1993.
    [15] H. Peremans and J. Van Campenhout, “Tri-aural Perception on a Mobile Robot,” IEEE International Conference on Robotica & Automation, vol.1, pp.265-270, 1993.
    [16] H. J. Jeon and B. K. Kim, “A Study on World Map Building for Mobile Robots with Tri-aural Ultrasonic Sensor System,” IEEE International Conference on Robotics and Automation, vol. 3, pp. 2907-2912, 1995.
    [17] Y. Han, H. Hahn, “Localization and Classification of Target Surfaces Using Two Pairs of Ultrasonic Sensors,” IEEE International Conference on Robotics & Automation, pp. 637-643, May 1999.
    [18] L. Kleeman and R. Kuc, “Mobile Robot Sonar for Target Localization and Classification,” Robotica, vol. 14, no. 4, pp. 295-318, Aug. 1995.
    [19] H. Akbarally and L. Kleeman, “A Sonar Sensor for Accurate 3D Target Localization and Classification,” IEEE International Conference on Robotics & Automation, pp. 3003-3008, 1995.
    [20] K. T. Song and W. H. Tang, “Environment Perception for a Mobile Robot Using Double Ultrasonic Sensors and a CCD Camera,” IEEE Transactions on Industrial Electronics, vol. 43, no. 3, pp. 372-379, June 1996.
    [21] T. Yata, A. Ohya, S. Yuta, “Fusion of Omni-directional Sonar and Omni-directional Vision for Environment Recognition of Mobile Robots,” IEEE International Conference on Robotics & Automation, vol. 4, pp. 3925-3930, April 2000.
    [22] Rafale C. Gonzalez and Richard E. Wood, Digital Image Processing, Addison Wesley, 1992.
    [23] Bastos-Filho, T. F. , Sarcinelli-Filho, M. and Freitas, R. A. C., “A multi-sensorial Integration Scheme to Help Mobile Robot Navigation through Obstacle Recognition,” IEEE International Conference on Emerging Technologies and Factory Automation, vol. 1, pp. 549-558, Oct. 1999.

    QR CODE
    :::