| 研究生: |
盧寧方 Ning-Fang Lu |
|---|---|
| 論文名稱: |
製備含鈷銅/鈷鎳金屬奈米顆粒於具官能基三維結構中孔洞材料之催化應用 |
| 指導教授: |
高憲明
Hsien-Ming Kao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 169 |
| 中文關鍵詞: | 對硝基苯酚 、硼烷氨 |
| 外文關鍵詞: | 4-nitrophenol, ammonia-borane |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分為三個部分,在第一部分將具羧酸官能化且擴孔的中孔洞二氧化矽SBA-16,簡稱為LP-S16C-x,x = [CES/(CES+TEOS)]。將LP-S16C-x含浸於鈷銅金屬離子前驅液,利用熱還原法將金屬離子還原成金屬奈米顆粒(CoyCu10-y-LP-S16C-x-TD)。含浸的過程中,在鹼性環境下 (pH = 9) ,中孔洞表面上的羧酸官能基團(-COOH)去質子化形成負離子(-COO-),因此有靜電作用力,能夠有效地吸引金屬離子進入孔洞中,成功還原鈷銅奈米金屬顆粒在此中孔洞材料,其金屬顆粒尺寸為5 - 7 nm之間。將材料應用於4-Nitrophenol還原催化反應之觸媒,Co2Cu8-LP-S16C-20表現最佳的催化效果,其活性參數為1519.5 s-1gmetal-1。
在第二部分中,將LP-S16C-20含浸於鈷銅離子前驅液,利用化學還原法將金屬離子還原成金屬奈米顆粒 (CoyCu10-y-LP-S16C-20),其金屬顆粒大小為2 - 4 nm之間。將材料使用於硼烷氨水解製氫的反應中,比起單金屬材料,具有鈷銅金屬的材料表現了較佳的催化活性,當鈷銅比例為4:6 (Co4Cu6-LP-S16C-20),表現最好的催化效果,其在反應中的轉換率為16.36 H2 mol/metal mol•min、活化能為38.10 kJ/mol。
第三部分將LP-S16C-20含浸於鈷鎳離子前驅液,利用化學還原法還原金屬 (CoyNi10-y-LP-S16C-20),金屬的顆粒大小約為2 – 7 nm,將具有金屬之中孔洞材料進行硼烷氨水解製氫反應,發現具有鈷鎳金屬的材料表現較佳的催化活性,Co6Ni4-LP-S16C-20的轉換率為18.95 H2 mol/metal mol•min、活化能為36.43 kJ/mol。結果顯示含奈米金屬之中孔洞材料有效提升硼烷氨水解反應的反應速率。
In first project, we report that the bimetallic cobalt-copper alloy nanoparticles with a particle size about 5.3 nm are successfully supported in the cage-type mesopores of large pore SBA-16 mesoporous silica (sample denoted as CoyCu10-y-LP-S16C-x-TD) functionalized with carboxylic acids (–COOH) groups. During the impregnation of metal solutions ,the –COOH groups on the surface of cage-type mesopore deprotonate under the alkaline condition (pH=9) and become negatively charged, with efficiently interact with Co2+/Cu2+ cations and allow facile fabrication of Co-Cu alloy nanoparticles. The CoyCu10-y-LP-S16C-x-TD catalyst exhibits a high catalytic activity with the activity parameter of 1519.5 (s-1gmetal-1) when it was used as the catalyst for the reduction of 4-nitrophenol.
In second project, non-noble bimetallic CoyCu10-y nanoparticles were successfully supported on the LP-S16C-20 (CoyCu10-y-LP-S16C-20-DD) by using chemical reduction with aqueous solution of NaBH4 and NH3BH3. While the cost-effective CoyCu10-y (2 - 4nm) was used for the hydrolysis of ammonia borane, the Co4Cu6-LP-S16C-20-DD showed high catalytic properties with turnover frequency of 16.36 H2 mol/metal mol•min and activation energy of 38.10 kJ/mol. The synergistic effect between Co and Cu species plays an important role for the improved performance in the catalytic hydrolysis of ammonia borane.
In third project, we report on the synthesis of CoyNi10-y nanoparticles supported on LP-S16C-20 and their catalytic activities for the hydrolytic dehydrogenation of ammonia borane. The catalysts of CoyNi10-y-LP-S16C-x-DD have been prepared by chemical reduction with aqueous solution of NaBH4 and NH3BH3. Compared with their monometallic counterparts, the bimetallic CoNi alloy NPs (2-7 nm) present higher catalytic activity for hydrolytic dehydrogenation of ammonia borane. The Co6Ni4-LP-S16C-20-DD nanocatalyst showed high catalytic properties with turnover frequency of 18.95 H2 mol/metal mol•min and activation energy of 36.43 kJ/mol. Alloying Co with Ni provides a required synergistic effect on the catalysis in the catalytic hydrolytic dehydrogenation of ammonia borane.
1. 吳嘉文, 中孔洞奈米材料之孔洞方向控制及其應用. 2009.
2. Beck, J. S.; Vartuli, J.; Roth, W. J.; Leonowicz, M.; Kresge, C.; Schmitt, K.; Chu, C.; Olson, D. H.; Sheppard, E.; McCullen, S., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843.
3. Kresge, C.; Leonowicz, M.; Roth, W. J.; Vartuli, J.; Beck, J., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature 1992, 359 (6397), 710.
4. Gibson, L., Mesosilica materials and organic pollutant adsorption: part A removal from air. Chemical Society Reviews 2014, 43 (15), 5163-5172.
5. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. science 1998, 279 (5350), 548-552.
6. Li, G.; Zhao, Z.; Liu, J.; Jiang, G., Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica. Journal of hazardous materials 2011, 192 (1), 277-283.
7. Aguado, J.; Arsuaga, J. M.; Arencibia, A.; Lindo, M.; Gascón, V., Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. Journal of Hazardous Materials 2009, 163 (1), 213-221.
8. Yan, Z.; Tao, S.; Yin, J.; Li, G., Mesoporous silicas functionalized with a high density of carboxylate groups as efficient absorbents for the removal of basic dyestuffs. Journal of Materials Chemistry 2006, 16 (24), 2347-2353.
9. Deere, J.; Magner, E.; Wall, J.; Hodnett, B., Adsorption and activity of cytochrome c on mesoporous silicates Chemical Communications 2001, (5), 465-465.
10. Yang, Y.-C.; Deka, J. R.; Wu, C.-E.; Tsai, C.-H.; Saikia, D.; Kao, H.-M., Cage like ordered carboxylic acid functionalized mesoporous silica with enlarged pores for enzyme adsorption. Journal of Materials Science 2017, 52 (11), 6322-6340.
11. Saikia, D.; Huang, Y.-Y.; Wu, C.-E.; Kao, H.-M., Size dependence of silver nanoparticles in carboxylic acid functionalized mesoporous silica SBA-15 for catalytic reduction of 4-nitrophenol. RSC Advances 2016, 6 (42), 35167-35176.
12. Hao, Y.; Chong, Y.; Li, S.; Yang, H., Controlled synthesis of Au nanoparticles in the nanocages of SBA-16: improved activity and enhanced recyclability for the oxidative esterification of alcohols. The Journal of Physical Chemistry C 2012, 116 (11), 6512-6519.
13. Li, M.; Hu, J.; Lu, H., A stable and efficient 3D cobalt-graphene composite catalyst for the hydrolysis of ammonia borane. Catalysis Science & Technology 2016, 6 (19), 7186-7192.
14. Karimian, D.; Yadollahi, B.; Mirkhani, V., Dual functional hybrid-polyoxometalate as a new approach for multidrug delivery. Microporous and Mesoporous Materials 2017, 247, 23-30.
15. Zhou, H.; Zhu, S.; Honma, I.; Seki, K., Methane gas storage in self-ordered mesoporous carbon (CMK-3). Chemical Physics Letters 2004, 396 (4-6), 252-255.
16. Sing, K.; Everett, D.; Haul, R.; Moscou, L.; Pierotti, R.; Rouquerol, J.; Siemienjewska, T., IUPAC Manual of Symbols and Terminology Appendix 2, Pt. 1. Colloid and Surface Chemistry, Pure Appl. Chem 1972, 31, 578.
17. Raman, N. K.; Anderson, M. T.; Brinker, C. J., Template-based approaches to the preparation of amorphous, nanoporous silicas. Chemistry of Materials 1996, 8 (8), 1682-1701.
18. Fayed, T. A.; Shaaban, M. H.; El‑Nahass, M. N.; Hassan, F. M., Hybrid organic–inorganic mesoporous silicates as optical nanosensor for toxic metals detection. International Journal of Chemical and Applied Biological Sciences 2014, 1 (6), 74.
19. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of lipid bilayers and vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes 1977, 470 (2), 185-201.
20. Soler-Illia, G. J. d. A.; Sanchez, C.; Lebeau, B.; Patarin, J., Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical reviews 2002, 102 (11), 4093-4138.
21. Holmberg, K.; Jönsson, B.; Kronberg, B.; Lindman, B., Surfactants and polymers in aqueous solution. Wiley Online Library: 2003; Vol. 2.
22. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D., Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994, 368 (6469), 317.
23. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society 1998, 120 (24), 6024-6036.
24. Kim, T.-W.; Ryoo, R.; Kruk, M.; Gierszal, K. P.; Jaroniec, M.; Kamiya, S.; Terasaki, O., Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time. The Journal of Physical Chemistry B 2004, 108 (31), 11480-11489.
25. Zhang, P.; Wu, Z.; Xiao, N.; Ren, L.; Meng, X.; Wang, C.; Li, F.; Li, Z.; Xiao, F.-S., Ordered cubic mesoporous silicas with large pore sizes synthesized via high-temperature route. Langmuir 2009, 25 (22), 13169-13175.
26. Lei, C.; Shin, Y.; Liu, J.; Ackerman, E. J., Entrapping enzyme in a functionalized nanoporous support. Journal of the American Chemical Society 2002, 124 (38), 11242-11243.
27. Liu, N.; Assink, R. A.; Brinker, C. J., Synthesis and characterization of highly ordered mesoporous thin films with –COOH terminated pore surfaces. Chemical Communications 2003, (3), 370-371.
28. Yang, C.-m.; Zibrowius, B.; Schüth, F., A novel synthetic route for negatively charged ordered mesoporous silica SBA-15. Chemical Communications 2003, (14), 1772-1773.
29. Tang, Q.; Xu, Y.; Wu, D.; Sun, Y., A study of carboxylic-modified mesoporous silica in controlled delivery for drug famotidine. Journal of Solid State Chemistry 2006, 179 (5), 1513-1520.
30. Bruzzoniti, M. C.; Prelle, A.; Sarzanini, C.; Onida, B.; Fiorilli, S.; Garrone, E., Retention of heavy metal ions on SBA‐15 mesoporous silica functionalised with carboxylic groups. Journal of separation science 2007, 30 (15), 2414-2420.
31. Han, L.; Sakamoto, Y.; Terasaki, O.; Li, Y.; Che, S., Synthesis of carboxylic group functionalized mesoporous silicas (CFMSs) with various structures. Journal of Materials Chemistry 2007, 17 (12), 1216-1221.
32. Tsai, C.-T.; Pan, Y.-C.; Ting, C.-C.; Vetrivel, S.; Chiang, A. S.; Fey, G. T.; Kao, H.-M., A simple one-pot route to mesoporous silicas SBA-15 functionalized with exceptionally high loadings of pendant carboxylic acid groups. Chemical Communications 2009, (33), 5018-5020.
33. Chen, C.-S.; Chen, C.-C.; Chen, C.-T.; Kao, H.-M., Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups. Chemical Communications 2011, 47 (8), 2288-2290.
34. Wu, S.-H.; Mou, C.-Y.; Lin, H.-P., Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews 2013, 42 (9), 3862-3875.
35. Chang, W.-C.; Deka, J. R.; Wu, H.-Y.; Shieh, F.-K.; Huang, S.-Y.; Kao, H.-M., Synthesis and characterization of large pore cubic mesoporous silicas functionalized with high contents of carboxylic acid groups and their use as adsorbents. Applied Catalysis B: Environmental 2013, 142, 817-827.
36. Tsai, C.-H.; Chang, W.-C.; Saikia, D.; Wu, C.-E.; Kao, H.-M., Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes. Journal of hazardous materials 2016, 309, 236-248.
37. Ko, C. H.; Ryoo, R., Imaging the channels in mesoporous molecular sieves with platinum. Chemical Communications 1996, (21), 2467-2468.
38. Mercier, L.; Pinnavaia, T. J., Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves: factors affecting Hg (II) uptake. Environmental Science & Technology 1998, 32 (18), 2749-2754.
39. Chi, Y.-S.; Lin, H.-P.; Mou, C.-Y., CO oxidation over gold nanocatalyst confined in mesoporous silica. Applied Catalysis A: General 2005, 284 (1-2), 199-206.
40. Zhao, Y.; Qi, Y.; Wei, Y.; Zhang, Y.; Zhang, S.; Yang, Y.; Liu, Z., Incorporation of Ag nanostructures into channels of nitrided mesoporous silica. Microporous and Mesoporous Materials 2008, 111 (1-3), 300-306.
41. Chen, C.; Lai, Y.; Chen, T.; Chen, C.; Lee, J.; Hsu, C.; Kao, H., Synthesis and characterization of Pt nanoparticles with different morphologies in mesoporous silica SBA-15 for methanol oxidation reaction. Nanoscale 2014, 6 (21), 12644-12654.
42. Chen, C.-S.; Budi, C. S.; Wu, H.-C.; Saikia, D.; Kao, H.-M., Size-tunable Ni nanoparticles supported on surface-modified, cage-type mesoporous silica as highly active catalysts for CO2 hydrogenation. ACS Catalysis 2017, 7 (12), 8367-8381.
43. Yang, X.; Zhong, H.; Zhu, Y.; Jiang, H.; Shen, J.; Huang, J.; Li, C., Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. Journal of Materials Chemistry A 2014, 2 (24), 9040-9047.
44. Sun, Y.; Xu, L.; Yin, Z.; Song, X., Synthesis of copper submicro/nanoplates with high stability and their recyclable superior catalytic activity towards 4-nitrophenol reduction. Journal of Materials Chemistry A 2013, 1 (39), 12361-12370.
45. Deka, P.; Deka, R. C.; Bharali, P., In situ generated copper nanoparticle catalyzed reduction of 4-nitrophenol. New Journal of Chemistry 2014, 38 (4), 1789-1793.
46. Li, X.; Zeng, C.; Jiang, J.; Ai, L., Magnetic cobalt nanoparticles embedded in hierarchically porous nitrogen-doped carbon frameworks for highly efficient and well-recyclable catalysis. Journal of Materials Chemistry A 2016, 4 (19), 7476-7482.
47. Mondal, A.; Mondal, A.; Adhikary, B.; Mukherjee, D. K., Cobalt nanoparticles as reusable catalysts for reduction of 4-nitrophenol under mild conditions. Bulletin of Materials Science 2017, 40 (2), 321-328.
48. Naseer, F.; Ajmal, M.; Bibi, F.; Farooqi, Z. H.; Siddiq, M., Copper and cobalt nanoparticles containing poly (acrylic acid‐co‐acrylamide) hydrogel composites for rapid reduction of 4‐nitrophenol and fast removal of malachite green from aqueous medium. Polymer Composites 2017.
49. Chandra, M.; Xu, Q., A high-performance hydrogen generation system: transition metal-catalyzed dissociation and hydrolysis of ammonia–borane. Journal of Power Sources 2006, 156 (2), 190-194.
50. Xu, Q.; Chandra, M., Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia–borane at room temperature. Journal of Power Sources 2006, 163 (1), 364-370.
51. Yang, Y.; Zhang, F.; Wang, H.; Yao, Q.; Chen, X.; Lu, Z.-H., Catalytic hydrolysis of ammonia borane by cobalt nickel nanoparticles supported on reduced graphene oxide for hydrogen generation. Journal of Nanomaterials 2014, 2014, 3.
52. Li, J.; Zhu, Q.-L.; Xu, Q., Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of metal–organic frameworks: synergetic catalysis in the hydrolysis of ammonia borane for hydrogen generation. Catalysis Science & Technology 2015, 5 (1), 525-530.
53. Yang, C.-M.; Zibrowius, B.; Schmidt, W.; Schüth, F., Stepwise removal of the copolymer template from mesopores and micropores in SBA-15. Chemistry of materials 2004, 16 (15), 2918-2925.
54. Deka, J. R.; Kao, H. M.; Huang, S. Y.; Chang, W. C.; Ting, C. C.; Rath, P. C.; Chen, C. S., Ethane‐Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acid Groups: Synthesis, Bifunctionalization, and Fabrication of Metal Nanoparticles. Chemistry-A European Journal 2014, 20 (3), 894-903.
55. Wang, Z.-L.; Yan, J.-M.; Wang, H.-L.; Jiang, Q., Self-protective cobalt nanocatalyst for long-time recycle application on hydrogen generation by its free metal-ion conversion. Journal of Power Sources 2013, 243, 431-435.
56. Zhao, X.; Li, Q.; Ma, X.; Xiong, Z.; Quan, F.; Xia, Y., Alginate fibers embedded with silver nanoparticles as efficient catalysts for reduction of 4-nitrophenol. RSC Advances 2015, 5 (61), 49534-49540.
57. Chandra, M.; Xu, Q., Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: An efficient hydrogen generation system. Journal of power sources 2006, 159 (2), 855-860.
58. Yao, Q.; Lu, Z.-H.; Wang, Y.; Chen, X.; Feng, G., Synergetic catalysis of non-noble bimetallic Cu–Co nanoparticles embedded in SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane. The Journal of Physical Chemistry C 2015, 119 (25), 14167-14174.
59. Krishna, R.; Fernandes, D. M.; Ventura, J.; Freire, C.; Titus, E., Novel synthesis of highly catalytic active Cu@ Ni/RGO nanocomposite for efficient hydrogenation of 4-nitrophenol organic pollutant. International Journal of Hydrogen Energy 2016, 41 (27), 11608-11615.
60. Xiao, Z.-Y.; Zhai, S.-R.; Ma, X.-P.; Zhao, Z.-Y.; Wang, X.; Bai, H.; An, Q.-D., Monolithic Cu/C hybrid beads with well-developed porosity for the reduction of 4-nitrophenol to 4-aminophenol. New Journal of Chemistry 2017, 41 (22), 13230-13234.
61. Rath, P. C.; Saikia, D.; Mishra, M.; Kao, H.-M., Exceptional catalytic performance of ultrafine Cu2O nanoparticles confined in cubic mesoporous carbon for 4-nitrophenol reduction. Applied Surface Science 2018, 427, 1217-1226.
62. Zhong, Y.; Gu, Y.; Yu, L.; Cheng, G.; Yang, X.; Sun, M.; He, B., APTES-functionalized Fe3O4 microspheres supported Cu atom-clusters with superior catalytic activity towards 4-nitrophenol reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018, 547, 28-36.
63. Yan, J.-M.; Wang, Z.-L.; Wang, H.-L.; Jiang, Q., Rapid and energy-efficient synthesis of a graphene–CuCo hybrid as a high performance catalyst. Journal of Materials Chemistry 2012, 22 (22), 10990-10993.
64. Li, C.; Zhou, J.; Gao, W.; Zhao, J.; Liu, J.; Zhao, Y.; Wei, M.; Evans, D. G.; Duan, X., Binary Cu–Co catalysts derived from hydrotalcites with excellent activity and recyclability towards NH 3 BH 3 dehydrogenation. Journal of Materials Chemistry A 2013, 1 (17), 5370-5376.
65. Sang, W.; Wang, C.; Zhang, X.; Yu, X.; Yu, C.; Zhao, J.; Wang, X.; Yang, X.; Li, L., Dendritic Co0. 52Cu0. 48 and Ni0. 19Cu0. 81 alloys as hydrogen generation catalysts via hydrolysis of ammonia borane. International Journal of Hydrogen Energy 2017, 42 (52), 30691-30703.
66. Du, Y.; Cao, N.; Yang, L.; Luo, W.; Cheng, G., One-step synthesis of magnetically recyclable rGO supported Cu@ Co core–shell nanoparticles: highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane and methylamine borane. New Journal of Chemistry 2013, 37 (10), 3035-3042.
67. Wang, H.; Zhou, L.; Han, M.; Tao, Z.; Cheng, F.; Chen, J., CuCo nanoparticles supported on hierarchically porous carbon as catalysts for hydrolysis of ammonia borane. Journal of Alloys and Compounds 2015, 651, 382-388.
68. Bulut, A.; Yurderi, M.; Ertas, İ. E.; Celebi, M.; Kaya, M.; Zahmakiran, M., Carbon dispersed copper-cobalt alloy nanoparticles: A cost-effective heterogeneous catalyst with exceptional performance in the hydrolytic dehydrogenation of ammonia-borane. Applied Catalysis B: Environmental 2016, 180, 121-129.
69. Liu, Y.; Zhang, J.; Guan, H.; Zhao, Y.; Yang, J.-H.; Zhang, B., Preparation of bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes for hydrolytic dehydrogenation of ammonia borane. Applied Surface Science 2018, 427, 106-113.
70. Yang, X.; Li, L.; Sang, W.; Zhao, J.; Wang, X.; Yu, C.; Zhang, X.; Tang, C., Boron nitride supported Ni nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. Journal of Alloys and Compounds 2017, 693, 642-649.
71. Yang, L.; Su, J.; Meng, X.; Luo, W.; Cheng, G., In situ synthesis of graphene supported Ag@ CoNi core–shell nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine borane. Journal of Materials Chemistry A 2013, 1 (34), 10016-10023.
72. Feng, W.; Yang, L.; Cao, N.; Du, C.; Dai, H.; Luo, W.; Cheng, G., In situ facile synthesis of bimetallic CoNi catalyst supported on graphene for hydrolytic dehydrogenation of amine borane. international journal of hydrogen energy 2014, 39 (7), 3371-3380.
73. Wen, M.; Zhou, S.; Wu, Q.; Zhang, J.; Wu, Q.; Wang, C.; Sun, Y., Construction of NiCo–Pt nanopolyhedron inlay-structures and their highly efficient catalysis hydrolytic dehydrogenation toward ammonia borane. Journal of Power Sources 2013, 232, 86-92.
74. Meng, X.; Yang, L.; Cao, N.; Du, C.; Hu, K.; Su, J.; Luo, W.; Cheng, G., Graphene‐Supported Trimetallic Core–Shell Cu@ CoNi Nanoparticles for Catalytic Hydrolysis of Amine Borane. ChemPlusChem 2014, 79 (2), 325-332.
75. Wang, Q.; Zhang, Z.; Liu, J.; Liu, R.; Liu, T., Bimetallic non-noble CoNi nanoparticles monodispersed on multiwall carbon nanotubes: Highly efficient hydrolysis of ammonia borane. Materials Chemistry and Physics 2018, 204, 58-61.
76. Audemar, M.; Ciotonea, C.; De Oliveira Vigier, K.; Royer, S.; Ungureanu, A.; Dragoi, B.; Dumitriu, E.; Jérôme, F., Selective Hydrogenation of Furfural to Furfuryl Alcohol in the Presence of a Recyclable Cobalt/SBA‐15 Catalyst. ChemSusChem 2015, 8 (11), 1885-1891.
77. Zhao, T.-J.; Zhang, Y.-N.; Wang, K.-X.; Su, J.; Wei, X.; Li, X.-H., General transfer hydrogenation by activating ammonia-borane over cobalt nanoparticles. RSC Advances 2015, 5 (124), 102736-102740.