跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張稟琛
Bing-Chen Zhang
論文名稱: 開發作為一般式鈣鈦礦太陽能電池電洞傳遞材料之D-A type高分子
Development of D-A type polymer as a hole transporting material for perovskite solar cells
指導教授: 吳春桂
Chun-Guey Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 139
中文關鍵詞: 共軛分子
外文關鍵詞: D-A type polymer
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來鈣鈦礦太陽能電池(Perovskite solar cells,簡稱PSCs),由於組裝過程簡易且原料成本低而快速發展。而常見高效率之PSCs之電洞傳遞層(hole transporting layer, HTL)材料為Spiro-OMe-TAD,但其電洞遷移率低,因此科學家持續投入開發作為PSC HTM之高電洞遷移率的高分子。本研究是以先前本實驗室所開發的P15的結構為基礎以具有高平面性及剛性結構BDT(benzodithiophene)衍生物為Donor,以具有拉電子能力好的PQ(pyrido-quinoxaline)衍生物為Acceptor。接續在Acceptor上引入triethylene glucol monomethyl ether單元(TEG)增加高分子的溶解度,合成出高分子P19,並將P15、P19的π-bridge以selenophene取代thiophene,合成出高分子P17、P20,接著再將P15、P17、P20中Donor的側鏈上引入Cl原子,合成出高分子P16、P18、P21,以此探討7個高分子的性質及作為PSC之HTL時的光伏表現。高分子熱裂解溫度約落在261 oC ~ 348 oC,且水接觸角皆大於90o具有疏水性。高分子膜的UV-Vis吸收光譜顯示各個高分子的最大吸收波長落在610到660 nm之間,且π-bridge為selenophene的P17、P18、P20、及P21的最大吸收波長比π-bridge為thiophene的P15、P16、及P19紅位移。在Donor的側鏈上引入氯原子的高分子P16、P18、及P21之HOMO能階較沒引入氯原子的P15、P17、P19、及P20之HOMO能階低。將高分子作為PSC之電洞傳遞層所組裝之PSC元件,光電轉換效率以π-bridge為selenophene的P17 (7.33%)、及P18 (10.21%)比π-bridg為thiophene的P16 (6.28%)、及P19 (0.02%)好。然而高分子P15為HTL所組裝之PSC元件效率(15.56%)比P16、P17、及P18為HTL所組裝之元件效率高,因P15分子量最大使其膜面最平坦且緻密。但以含有TEG取代基的P19、P20、及P21為HTM的PSC元件之光電轉換效率都不高,可能是此三個高分子無法由旋轉塗佈法在鈣鈦礦膜上製備一個完整且連續的膜,因此電洞無法順利傳遞到電極。其中以P15為HTM所組裝之PSC元件有最高的光電轉換效率,為15.56%。


    Perovskite solar cells (PSCs) have developed rapidly due to the simple assembly process and low raw material costs. The commonly used hole transporting material (HTM) with high-efficiency PSCs is spiro-OMe-TAD, but its hole mobility is low. Therefore, the development of polymers with high hole mobility as the hole transporting materials (HTMs) is an important research. This study is to develop D-A polymeric HTMs for PSCs. P15, which is previously prepared in our laboratory, having BDT (benzodithiophene) derivative (with high planarity and rigid structure) as the donor unit and PQ (pyrido-quinoxaline) derivative (with good electron withdrawing ability) as the acceptor unit was used as a model polymer. Triethylene glucol monomethyl ether (TEG) unit was used as a substitute to increase the solubility to form polymer P19. Thiophene in P15 and P19 was replaced with selenophene as the π-bridge to obtain polymer P17 and P20. Chlorine atoms were introduced into the side chains of the donor (to increase the interaction between polymer chains) in P15, P17, and P20 to synthesize P16, P18, and P21. The thermal stability of the polymers are about 261 oC ~ 348 oC. The water contact angle of all polymer films is greater than 90o, which means they are all hydrophobic. UV-Vis absorption spectra show that the λmax of the six polymers falls between 608 and 654 nm, and the λmax values of P17, P18, P20, and P21, which has selenophene bridge are longer than those of P15, P16, P19 where the π-bridge is thiophene. The HOMO energy levels of P16, P18, and P21 having chlorine atoms in the side chain are lower than those of P15, P17, P19, and P20 without chlorine atoms. PSC devices based on P17, P18, P20, and P21 (with π-bridge of selenophene) HTLs have higher efficiency than those of P16 and P19 (with thiophene π-bridg) as HTLs. However, the photoelectric efficiency of the PSC device assembled by the polymer P15 (15.56%) with HTL is higher than that of the device assembled by the P16, P17, and P18 as the HTL. Because the molecular weight of P15 is the largest, the film surface is the most flat and dense. The efficiencies of PSCs based on P19, P20, and P21 HTMs are very low. It is due to the three polymers cannot form a continuous film on top of perovskite by spin coating method.

    目錄 摘要 i Abstrct iii Graphical Abstract v 謝誌 vi 圖目錄 x 表目錄 xiii 第一章、 緒論 1 1-1、 前言 1 1-2、 太陽能電池種類 3 1-3、 鈣鈦礦太陽能電池(Perovskite Solar Cell, PSC)之架構及作用機制 6 1-4、 一般式鈣鈦礦太陽能電池用的電洞傳遞材料 8 1-5、 研究動機 24 第二章、 實驗部分 26 2-1、 實驗藥品 26 2-2、 產物與中間產物之結構與簡稱 29 2-3、 實驗步驟 34 2-3-1 Donor 3的合成步驟,如圖2-3-1所示 34 2-3-2 Donor 4的合成步驟,如圖2-3-2所示 40 2-3-3 Acceptor 3的合成步驟,如圖2-3-3所示 45 2-3-4 Acceptor 5的合成步驟,如圖2-3-4所示 49 2-3-5 Acceptor 4的合成步驟,如圖2-3-5所示 51 2-3-6 Pd(PPh3)4催化劑的合成,如圖2-3-6所示 56 2-3-7 Trimethyl(thiophen-2-yl)-stannane、Trimethyl(selenophen-2-yl)stannane的合成,如圖2-3-7所示 56 2-3-8 高分子P16~P21的合成,如圖2-3-8~圖2-3-14所示 59 2-4、 高分子的純化方式 65 2-5、 儀器分析及樣品製備 65 2-5-1 核磁共振光譜儀(Nuclear Magnetic Resonance Spectrometer),Bruker 300 MHz & Bruker 500 MHz 65 2-5-2 聚焦微波化學反應系統,MARS 230/60 66 2-5-3 紫外/可見/紅外光分光光譜儀(UV/Vis Spectrometer),Hitachi U-4100 67 2-5-4 電化學測量(Electrochemical Measurement System),AUTOLAB PGSTAT30 69 2-5-5 熱重分析(Thermogravimetric Analysis),TA Instruments TGA Q500 71 2-5-6 X 光 光 繞 射 分析,D8 Discover, Buker, XRD 72 2-5-7 接觸角量測儀Contact angle,Grandhand Ctag01 73 2-5-8 膠體滲透層析分析(Anfinity 1260 sensity, 1262RID, GPC) 73 2-6、 高分子溶解度的測量 75 第三章、 結果與討論 76 3-1、 高分子的分子量 76 3-2、 高分子的熱穩定性質 78 3-3、 高分子表面的親疏水性 78 3-4、 高分子的溶解度 80 3-5、 高分子的紫外光/可見光吸收光譜 81 3-6、 高分子的前置軌域能階 87 3-7、 高分子的結晶度探討 90 3-8、 高分子為HTL之一般式PSC元件之光伏參數 94 第四章、結論 97 參考資料 98 附錄 103 附錄 1 、NMR 圖譜 103

    1. 臺灣經濟部能源局太陽光2年推動計畫 (2017年9月).
    2. 摘錄於工業材料雜誌405期 (2020年9月5日).
    3. 摘錄於 National Renewable Energy Laboratory, NREL.
    4. 摘錄於Wikipedia Gustav Rose 學者生平資料.
    5. Zilong Zhang, Lusheng Liang, Longhui Deng, Lu Ren, Nan Zhao, Jianhua, Huang, Yaming Yu, Peng Gao, “Fused Dithienopicenocarbazole Enabling High Mobility Dopant-Free Hole-Transporting Polymers for Efficient and Stable Perovskite Solar Cells”, ACS Appl. Mater. Interfaces, 2021, 13, 6688–6698
    6. J. Zhao, X. Zheng, Y. Deng, T. Li, Y. Shao, A. Gruverman, J. Shield J. Huang, “Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime”, Energy Environ. Sci., 2016, 9, 3650-3656.
    7. Guofeng You, Qixin Zhuang, Lijun Wang, Xinyu Lin, Ding Zou, Zhenghuan Lin, Hongyu Zhen, Wenliu Zhuang, Qidan Ling, Dopant-Free, “Donor–Acceptor-Type Polymeric Hole-Transporting Materials for the Perovskite Solar Cells with Power Conversion Efficiencies over 20%”, Adv. Energy Mater., 2019, 10, 903146
    8. X. Yang, Z. Yu, L. Sun, A. Hagfeldt, B. Cai and X. Jiang , “Boosting the power conversion efficiency of perovskite solar cells to 17.7% with an indolo[3,2-b]carbazole dopant-free hole transporting material by improving its spatial configuration”, J. Mater. Chem. A, 2019, 7, 14835-14841.
    9. Inhwa Lee, Jae Hoon Yun, Hae Jung Son, Taek-Soo Kim, “Accelerated Degradation Due to Weakened Adhesion from Li-TFSI Additives in Perovskite Solar Cells ”, ACS Appl. Mater. Interfaces, 2017, 9, 7029–7035
    10. Jin Hyuck Heo, Sang Hyuk Im, Jun Hong Noh, Tarak N. Mandal, Choong-Sun Lim, Jeong Ah Chang, Yong Hui Lee, Hi-jung Kim, Arpita Sarkar, Md. K. Nazeeruddin,Michael Gra¨tzel, Sang Il Seok, “Efficient inorganic–organic hybrid heterojunctionsolar cells containing perovskite compound andpolymeric hole conductors”, Nat. Photonics, 2013, 7, 486–491
    11. M. Stolterfoht, C. M. Wolff, Y. Amir, A. Paulke, L. Perdigón-Toro, P. Caprioglio and D. Neher, “Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells ”, Energy Environ. Sci., 2017, 10, 1530-1539.
    12. Naoki Ishida, Atsushi Wakamiya, Akinori Saeki, “ Quantifying Hole Transfer Yield from Perovskite to Polymer Layer: Statistical Correlation of Solar Cell Outputs with Kinetic and Energetic Properties”, ACS Photonics, 2016, 3, 1678–1688
    13. J. Lee, G.W. Kim, M. Kim, S. A. Park and T. Park, “Nonaromatic GreenSolventProcessable, DopantFree, and Lead‐Capturable Hole Transport Polymers in Perovskite Solar Cells with High Efficiency”, Adv. Energy Mater., 2020, 10, 1902662.
    14. W. Chen, X. Bao, Q. Zhu, D. Zhu, M. Qiu, M. Sun and R. Yang, “Simple planar perovskite solar cells with a dopant-free benzodithiophene conjugated polymer as hole transporting material”, J. Mater. Chem. C, 2015, 3, 10070-10073.
    15. K. Kranthiraja, K. Gunasekar, H. Kim, A.-N. Cho, N. G. Park, S. Kim, B. J. Kim, R. Nishikubo, A. Saeki, M. Song and S.-H. Jin, “High‐Performance Long Term Stable Dopant Free Perovskite Solar Cells and Additive‐Free Organic Solar Cells by Employing Newly Designed Multirole π‐Conjugated Polymers”, Adv. Mater. 2017, 29, 1700183.
    16. S. Zhang, Y. Qin, J. Zhu and J. Hou, “Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor”, Adv. Mater., 2018, 30, e1800868.
    17. Q. Fan, Q. Zhu, Z. Xu, W. Su, J. Chen, J. Wu, X. Guo, W. Ma, M.Zhang and Y. Li, “Chlorine substituted 2D-conjugated polymer for high-performance polymer solar cells with 13.1% efficiency via toluene processing”, Nano Energy, 2018, 48, 413-420.
    18. J.-M. Jiang, P. Raghunath, H.-K. Lin, Y.-C. Lin, M. C. Lin and K.-H. Wei, “Location and Number of Selenium Atoms in Two-Dimensional Conjugated Polymers Affect Their Band-Gap Energies and Photovoltaic Performance”, Macromolecules, 2014, 47, 7070-7080.
    19. R. K. Gunasekaran, P. J. S. Rana, S. H. Park, V. Tamilavan, S. Karuppanan, H.-J. Kim and K. Prabakar, “Open atmospheric processed perovskite solar cells using dopant-free, highly hydrophobic hole-transporting materials: Influence of thiophene and selenophene π-spacers on charge transport and recombination properties”, Solar Energy Materials and Solar Cells, 2019, 199, 66-74.
    20. Xiangyu Kong, Yue Jiang, Xiayan Wu, Cong Chen, Jiali Guo, Shengjian Liu, Xingsen Gao, Guofu Zhou, Jun-Ming Liu, Krzysztof Kempaae,and Jinwei Gao, Dopant-free F-substituted benzodithiophene copolymer hole-transporting materials for efficient and stable perovskite solar cells, J. Mater. Chem. A., 2020, 8, 1858-1864
    21. B. L. Hayes, “Recent Advanced in Microwave Assisted Synthesis”, Aldricchem. Aceta., 2004, 17, 65-56.
    22. 魏伸紘,「以電化學法檢測人類乳突病毒序列之研究」,國立交通大學,碩士論文,2004。
    23. http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes/ linear-sweep-and-cyclic-voltametry-the-principles, August 13th, 2017.
    24. V. V. Pavlishchuk and A. W. Addison, “Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C”, Inorganica Chim. Acta, 2000, 298, 97-102.
    25. J. TAUC et al., “Optical Properties and Electronic Structure of Amorphous Germanium”, Phys. Stat. Sol., 1966, 15, 627-637.
    26. E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors”, Philos. Mag., 1970, 22, 903-922.
    27. K. Eom, U. Kwon, S. Kalanur, Hui J. Park and H. Seo, “Depth-resolved band alignments of perovskite solar cells with significant interfacial effects”, J. Mater. Chem. A, 2017, 5, 2563-2571.
    28. A. Mannu, M. Enrica, D. Pietro and A. Mele, “Band-Gap Energies of Choline Chloride and Triphenylmethylphosphoniumbromide-Based Systems”, Molecules, 2020, 25, 1495-1506.
    29. Y. Yao, H. Dong and W. Hu, “Ordering of Conjugated Polymer Molecules: Recent Advances and Perspectives”, Polym. Chem., 2013,
    4, 5197-5205.
    30. W. Li, L. Yang, J. R. Tumbleston, L. Yan, H. Ade and W. You, “Controlling Molecular Weight of a High Efficiency Donor-Acceptor
    Conjugated Polymer and Understanding its Significant Impact on Photovoltaic Properties”, Adv. Mater., 2014, 26, 4456-4462.
    31. W. Li, L. Yang, J. R. Tumbleston, L. Yan, H. Ade and W. You, “Controlling Molecular Weight of a High Efficiency Donor-Acceptor Conjugated Polymer and Understanding its Significant Impact on Photovoltaic Properties”, Adv. Mater., 2014, 26, 4456-4462.
    32. L. Huo, T. Liu, B. Fan, Z. Zhao, X. Sun, D. Wei, M. Yu, Y. Liu and Y. Sun, “Organic Solar Cells Based on a 2D Benzo [1,2-b:4,5-b′]Difuran Conjugated Polymer with High-Power Conversion Efficiency”, Adv. Mater., 2015, 27, 6969-6975.
    33. W. H. Tseng, H. C. Chen, Y. C. Chien, C. C. Liu, Y. K. Peng, Y. S. Wu,
    J. H. Chang, S. H. Liu, S. W. Chou, C. L. Liu, Y. H. Chen, C. I. Wu and P. T. Chou, “Comprehensive Study of Medium-Bandgap Conjugated Polymer Merging a Fluorinated Quinoxaline with Branched Side Chains for Highly Efficient and Air-Stable Polymer Solar Cells”, J. Mater. Chem. A., 2014, 2, 20203-20212.
    34. B. Carsten, F. He, H. J. Son, T. Xu and L. Yu, “Stille Polycondensation for Synthesis of Functional Materials”, Chem. Rev., 2011, 111, 1493-1528.
    35. Lou Haoran, Ye Zhizhen, He Haiping, “Research progress on light stability of lead halide perovskites”, Acta Phys., 2019, 68, 157102.

    QR CODE
    :::