跳到主要內容

簡易檢索 / 詳目顯示

研究生: 斯亞萬
Yudha Styawan
論文名稱: 印尼蘇門答臘隱沒帶之震波衰減特性
Characteristics of Seismic Attenuation in Sumatra Subduction Zone, Indonesia
指導教授: 郭俊翔
Chun-Hsiang Kuo
黃柏壽
Bor-Shouh Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2021
畢業學年度: 110
語文別: 英文
論文頁數: 111
中文關鍵詞: 品質因子衰減蘇門答臘隱沒帶板塊撕裂
外文關鍵詞: quality factor, attenuation, Sumatra subduction zone, slab tear
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 已有研究成功地利用局部或區域性地震資料分析震波衰減特性,尤其是在隱沒帶,其對高溫與流體飽和度敏感的能力有助於理解隱沒帶之構造。在本研究中,我們嘗試利用此種方法來關注蘇門答臘隱沒帶震波衰減的一般性特徵,特別像是與板塊撕裂的此種物理性質之相關性。震波衰減是指當地震波通過介質時的能量損失,以品質因子(Q)表示且成反比關係,震波衰減的發生是因一些能量在傳播的過程中轉化為熱或當震波通過不同特性的材料時被反射和折射所影響。本研究利用印尼氣象、氣候與地球物理局(BMKG)安裝在蘇門答臘各地的38個地震站,在2013年1月至2018年7月的寬頻地震資料,共271起事件,深度範圍100至350公里,地震規模介於3.9至6.5。拐角頻率和震波衰減分開處理以避免震源和路徑參數間的互償效應。為考慮場址放大因子,我們透過矩陣方法,假設衰減和頻率無關的情況下嘗試擬合觀測和計算的位移譜,以求解每個測站的衰減參數。結果顯示澳洲板塊隱沒至蘇門答臘之下的區域表現出相對高的Q值,Qp與Qs 分別約 677和 776;相比之下,地函楔形體表現顯著而相對低的Q值。這是隱沒帶常見的地震學特徵,冷卻的緻密岩石圈板塊隱沒至地函中,地函楔形體可能反應板塊脫水作用。在前弧測站所記錄的高Q值區域中,一些異常的低Q值存在於北蘇門答臘,尤其是與多巴湖底下重合的區域,這可能成為板塊撕裂存在的額外證據。這個板塊撕裂的結果可能增加熔化作用的活動,多巴湖周圍群山的測站所記錄的低Q值區域揭露了這項特性。


    Seismic attenuation, especially in subduction zones, has been studied successfully by some previous studies using local or regional earthquake data. The capability of being sensitive to the high temperature and fluid saturation could help understand the subduction zone structure. In this study, we attempt to use this method to focus on the general characteristics of seismic attenuation in the Sumatra subduction zone and correlating to the physical properties such as slab tear in particular. Seismic attenuation refers to the energy loss of seismic waves while propagating on a medium, represented by the opposite of quality factor (Q). Seismic attenuation could occur because some of the energy may convert into heat during propagation or be reflected and refracted while passing through materials with different properties. This study utilizes broadband seismic data from 38 stations of the Meteorological, Climatological, and Geophysical Agency of Indonesia (BMKG) that are located throughout Sumatra, collected from January 2013 to July 2018. It has 271 events around 100 - 350 km depth with magnitude ranges between 3.9 and 6.5 Mw. Corner frequency and seismic attenuation are processed separately to avoid the trade-off between source and path parameters during the data processing section. To consider the site amplification factor, we solve the attenuation parameter for each station by using a matrix approach and try to fit between the observed and calculated displacement power spectra, assuming that the attenuation is frequency-independent. The results indicate that the Australian slab sunk beneath Sumatra signifies a relatively high-Q zone, around 677 and 776 for Qp and Qs, respectively. In contrast, the mantle wedge has a significant low-Q value. It is a common seismological characteristic in the subduction zone where the cooled dense lithospheric plate is subducted into the mantle, whereas the mantle wedge may reflect the slab dehydration. In the high-Q zone recorded in fore-arc stations, some lower-Q anomalies exist in northern Sumatra, especially coincide with the area beneath Lake Toba, which could be additional evidence to the existence of the slab tear. The consequence of this slab tear, which may increase the active melting, is revealed by the lower-Q zone recorded in the stations of the mountains around Lake Toba.

    Front Cover...i Inside Cover...ii Authorization for thesis...iii Advisor’s recommendation letter...iv Verification letter from the Oral Examination Committee...v 中文摘要...viii Abstract...ix Acknowledgments...x Table of Contents...xii List of Figures...xiv List of Tables...xv 1. INTRODUCTION...1 1.1 Background...1 1.2 Aims and structure of the thesis...3 2. DATA ACQUISITION AND PRE-PROCESSING...7 2.1 Earthquake data...7 2.2 Data pre-processing...7 3. METHOD AND RESULTS...11 3.1 Seismic attenuation...11 3.2 Corner frequency...13 3.3 Site amplification factor Rj...14 3.4 Procedure of this study...17 3.5 Validation...19 3.6 Results...19 4. DISCUSSION AND CONCLUSIONS...38 4.1 Interpretation of the results...38 4.1.1 Subduction zone structure...38 4.1.2 Fore-arc Q and the existence of slab tear...39 4.1.3 Q and magmatism beneath Lake Toba...41 4.1.4 Interesting low-Q anomalies existing beneath Suoh volcano...42 4.2 Future works...42 4.3 Conclusions...44 Bibliographies...46 Appendix A...51 Appendix B...58 Appendix C...60 Appendix D...65 Appendix E...80 Appendix F...95

    Aki, K., Richards, P.G., 2002. Quantitative Seismology, 2nd ed. University Science Books, Sausalito, California.
    Amaru, M., 2007. Global Travel Time Tomography With 3-D Reference Models. Geol Ultraiectina 274.
    Andrews, D.J., 2013. Objective Determination of Source Parameters and Similarity of Earthquakes of Different Size, in: Das, S., Boatwright, J., Scholz, C.H. (Eds.), Geophysical Monograph Series. American Geophysical Union, Washington, D. C., pp. 259–267. https://doi.org/10.1029/GM037p0259
    Anshori, M., Nugraha, A.D., Puspito, N.T., 2017. Preliminary Result of 3-D Attenuation Tomography Beneath Sunda Strait and Western Part of Java. AIP Conf. Proc. 1857, 020004. https://doi.org/10.1063/1.4987046
    Barber, A.J., Crow, M.J., Milsom, J.S., 2005. Sumatra: Geology, Resources and Tectonic Evolution. Geological Society of London. https://doi.org/10.1144/GSL.MEM.2005.031
    Brune, J.N., 1970. Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes. J. Geophys. Res. 1896-1977 75, 4997–5009. https://doi.org/10.1029/JB075i026p04997
    Chesner, C.A., 2012. The Toba Caldera Complex. Quat. Int., the Toba Volcanic Super-eruption of 74,000 Years Ago: Climate Change, Environments, and Evolving Humans 258, 5–18. https://doi.org/10.1016/j.quaint.2011.09.025
    Diantari, H.C., Suryanto, W., Anggraini, A., Irnaka, T.M., Susilanto, P., Ngadmanto, D., 2018. Preliminary Magnitude of Completeness Quantification of Improved BMKG Catalog (2008-2016) in Indonesian Region. IOP Conf. Ser. Earth Environ. Sci. 132, 012026. https://doi.org/10.1088/1755-1315/132/1/012026
    Eberhart‐Phillips, D., Chadwick, M., 2002. Three-Dimensional Attenuation Model of the Shallow Hikurangi Subduction Zone in the Raukumara Peninsula, New Zealand. J. Geophys. Res. Solid Earth 107, ESE 3-1-ESE 3-15. https://doi.org/10.1029/2000JB000046
    Giroux, B., 2014. Comparison of Grid-Based Methods For Raytracing On Unstructured Meshes, in: SEG Technical Program Expanded Abstracts 2014, SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists, pp. 3388–3392. https://doi.org/10.1190/segam2014-1197.1
    Giroux, B., Larouche, B., 2013. Task-Parallel Implementation of 3D Shortest Path Raytracing For Geophysical Applications. Comput. Geosci. 54, 130–141. https://doi.org/10.1016/j.cageo.2012.12.005
    Hall, R., Spakman, W., 2015. Mantle Structure and Tectonic History of SE Asia. Tectonophysics 658. https://doi.org/10.1016/j.tecto.2015.07.003
    Haridhi, H.A., Sianipar, D., 2021. The Characteristics of Body-Wave Records Between Forearc and Backarc Region at the Sumatra Subduction Zone From Deep Regional Earthquakes. IOP Conf. Ser. Earth Environ. Sci. 674, 012035. https://doi.org/10.1088/1755-1315/674/1/012035
    Hayes, G., 2018. Slab2 - A Comprehensive Subduction Zone Geometry Model. https://doi.org/10.5066/F7PV6JNV
    Hippchen, S., Hyndman, R.D., 2008. Thermal and Structural Models of the Sumatra Subduction Zone: Implications For the Megathrust Seismogenic Zone. J. Geophys. Res. Solid Earth 113. https://doi.org/10.1029/2008JB005698
    Hochstein, M.P., Sudarman, S., 1993. Geothermal Resources of Sumatra. Geothermics 22, 181–200. https://doi.org/10.1016/0375-6505(93)90042-L
    Karato, S., 2003. Mapping Water Content in the Upper Mantle, in: Eiler, J. (Ed.), Geophysical Monograph Series. American Geophysical Union, Washington, D. C., pp. 135–152. https://doi.org/10.1029/138GM08
    Koulakov, I., Kasatkina, E., Shapiro, N.M., Jaupart, C., Vasilevsky, A., El Khrepy, S., Al-Arifi, N., Smirnov, S., 2016. The Feeder System of the Toba Supervolcano From the Slab To the Shallow Reservoir. Nat. Commun. 7, 12228. https://doi.org/10.1038/ncomms12228
    Kuo, C.-H., Huang, J.-Y., Lin, C.-M., Chen, C.-T., Wen, K.-L., 2021. Near-Surface Frequency-Dependent Nonlinear Damping Ratio Observation of Ground Motions Using SMART1. Soil Dyn. Earthq. Eng. 147, 106798. https://doi.org/10.1016/j.soildyn.2021.106798
    Lee, C.-P., Hirata, N., Huang, B.-S., Huang, W.-G., Tsai, Y.-B., 2009. Anomalous Seismic Attenuation along the Plate Collision Boundary in Southeastern Taiwan: Observations from a Linear Seismic Array. Bull. Seismol. Soc. Am. 99, 2662–2680. https://doi.org/10.1785/0120080302
    Lees, J.M., Lindley, G.T., 1994. Three-Dimensional Attenuation Tomography at Loma Prieta: Inversion of t * for Q. J. Geophys. Res. Solid Earth 99, 6843–6863. https://doi.org/10.1029/93JB03460
    Lindley, G.T., Archuleta, R.J., 1992. Earthquake Source Parameters and the Frequency Dependence of Attenuation at Coalinga, Mammoth Lakes, and the Santa Cruz Mountains, California. J. Geophys. Res. Solid Earth 97, 14137–14154. https://doi.org/10.1029/92JB00550
    Liu, S., Suardi, I., Zheng, M., Yang, D., Huang, X., Tong, P., 2019. Slab Morphology Beneath Northern Sumatra Revealed by Regional and Teleseismic Traveltime Tomography. J. Geophys. Res. Solid Earth 124, 10544–10564. https://doi.org/10.1029/2019JB017625
    Liu, X., Zhao, D., 2015. Seismic Attenuation Tomography of the Southwest Japan Arc: New Insight Into Subduction Dynamics. Geophys. J. Int. 201, 135–156. https://doi.org/10.1093/gji/ggv007
    Liu, X., Zhao, D., Li, S., 2014. Seismic Attenuation Tomography of the Northeast Japan Arc: Insight into the 2011 Tohoku Earthquake (Mw 9.0) and Subduction Dynamics. J. Geophys. Res. Solid Earth 119, 1094–1118. https://doi.org/10.1002/2013JB010591
    Lorenzo, S. de, Zollo, A., Zito, G., 2010. Source, Attenuation, and Site Parameters of the 1997 Umbria-Marche Seismic Sequence from the Inversion of P Wave Spectra: A Comparison Between Constant QP and Frequency-Dependent QP Models. J. Geophys. Res. Solid Earth 115. https://doi.org/10.1029/2009JB007004
    Lu, C., Grand, S.P., Lai, H., Garnero, E.J., 2019. TX2019slab: A New P and S Tomography Model Incorporating Subducting Slabs. J. Geophys. Res. Solid Earth 124, 11549–11567. https://doi.org/10.1029/2019JB017448
    McCaffrey, R., 2009. The Tectonic Framework of the Sumatran Subduction Zone. Annu. Rev. Earth Planet. Sci. 37, 345–366. https://doi.org/10.1146/annurev.earth.031208.100212
    Morozov, I., Ahmadi, A.B., 2015. Taxonomy of Q. Geophysics 80, T41–T49. https://doi.org/10.1190/geo2013-0446.1
    Muksin, U., Haberland, C., Bauer, K., Weber, M., 2013. Three-Dimensional Upper Crustal Structure of the Geothermal System in Tarutung (North Sumatra, Indonesia) Revealed By Seismic Attenuation Tomography. Geophys. J. Int. 195, 2037–2049. https://doi.org/10.1093/gji/ggt383
    Nakajima, J., Hada, S., Hayami, E., Uchida, N., Hasegawa, A., Yoshioka, S., Matsuzawa, T., Umino, N., 2013. Seismic Attenuation Beneath Northeastern Japan: Constraints On Mantle Dynamics and Arc Magmatism. J. Geophys. Res. Solid Earth 118, 5838–5855. https://doi.org/10.1002/2013JB010388
    Nasr, M., Giroux, B., Dupuis, J.C., 2020. A Hybrid Approach To Compute Seismic Travel Times in Three-Dimensional Tetrahedral Meshes. Geophys. Prospect. 68, 1291–1313. https://doi.org/10.1111/1365-2478.12930
    Nasr, M., Giroux, B., Dupuis, J.C., 2018. An Optimized Approach To Compute Traveltimes in 3D Unstructured Meshes, in: SEG Technical Program Expanded Abstracts 2018, SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists, pp. 5073–5077. https://doi.org/10.1190/segam2018-2997918.1
    Nishimura, S., Abe, E., Nishida, J., Yokoyama, T., Dharma, A., Hehanussa, P., Hehuwat, F., 1984. A Gravity and Volcanostratigraphic Interpretation of the Lake Toba Region, North Sumatra, Indonesia. Tectonophysics 109, 253–272. https://doi.org/10.1016/0040-1951(84)90144-6
    Pesicek, J.D., Thurber, C.H., Widiyantoro, S., Engdahl, E.R., DeShon, H.R., 2008. Complex Slab Subduction Beneath Northern Sumatra. Geophys. Res. Lett. 35. https://doi.org/10.1029/2008GL035262
    Pesicek, J.D., Thurber, C.H., Widiyantoro, S., Zhang, H., DeShon, H.R., Engdahl, E.R., 2010. Sharpening the Tomographic Image of the Subducting Slab Below Sumatra, the Andaman Islands and Burma. Geophys. J. Int. 182, 433–453. https://doi.org/10.1111/j.1365-246X.2010.04630.x
    Pozgay, S.H., Wiens, D.A., Conder, J.A., Shiobara, H., Sugioka, H., 2009. Seismic Attenuation Tomography of the Mariana Subduction System: Implications For Thermal Structure, Volatile Distribution, and Slow Spreading Dynamics. Geochem. Geophys. Geosystems 10. https://doi.org/10.1029/2008GC002313
    Scherbaum, F., 1990. Combined Inversion For the Three-Dimensional Q Structure and Source Parameters Using Microearthquake Spectra. J. Geophys. Res. Solid Earth 95, 12423–12438. https://doi.org/10.1029/JB095iB08p12423
    Shiina, T., Nakajima, J., Matsuzawa, T., 2018. P-Wave Attenuation in the Pacific Slab Beneath Northeastern Japan Revealed By the Spectral Ratio of Intraslab Earthquakes. Earth Planet. Sci. Lett. 489, 37–48. https://doi.org/10.1016/j.epsl.2018.02.032
    Sieh, K., Natawidjaja, D., 2000. Neotectonics of the Sumatran Fault, Indonesia. J. Geophys. Res. Solid Earth 105, 28295–28326. https://doi.org/10.1029/2000JB900120
    Stachnik, J.C., Abers, G.A., Christensen, D.H., 2004. Seismic Attenuation and Mantle Wedge Temperatures in the Alaska Subduction Zone. J. Geophys. Res. Solid Earth 109. https://doi.org/10.1029/2004JB003018
    Stankiewicz, J., Ryberg, T., Haberland, C., Fauzi, Natawidjaja, D., 2010. Lake Toba Volcano Magma Chamber Imaged By Ambient Seismic Noise Tomography. Geophys. Res. Lett. 37. https://doi.org/10.1029/2010GL044211
    Tusa, G., Gresta, S., 2008. Frequency-Dependent Attenuation of P Waves and Estimation of Earthquake Source Parameters in Southeastern Sicily, Italy. Bull. Seismol. Soc. Am. 98, 2772–2794. https://doi.org/10.1785/0120080105
    Wang, Z., Zhao, D., 2019. Updated Attenuation Tomography of Japan Subduction Zone. Geophys. J. Int. 219, 1679–1697. https://doi.org/10.1093/gji/ggz339

    QR CODE
    :::