跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡淼聖
Miao-Sheng Tsai
論文名稱: 矽離子佈植氮化鎵薄膜之電性研究
Electrical Properties of Silicon Implanted GaN
指導教授: 紀國鐘
Gou-Chung Chi
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 89
語文別: 中文
論文頁數: 95
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 經由離子佈植方式摻雜矽原子後,對其電性的改變。藉由高劑量的摻
    雜,接著在氮氣、氧氣、空氣不同環境下活化,成功的使所有的P 型
    氮化鎵薄膜活化成n 型(使得在原生P 型氮化鎵薄膜形成一層n 型氮
    化鎵),而經由1000℃ 30 分鐘的高溫熱處理後,原生P 型和n 型氮
    化鎵薄膜皆活化成n+型,載子濃度值約5.5×1019㎝-3(面載子濃度值
    約3×1015 ㎝-2),活化率約27﹪。矽離子佈植的條件為40KeV/2E15
    ㎝- 2 , 100KeV/5E15 ㎝- 2 , 200KeV/5E15 ㎝- 2。藉由多次的矽離子佈
    植,調整不同的能量與劑量,在氮化鎵薄膜內形成一均勻的摻雜區
    域。降低離子佈植劑量為40KeV/8E14 ㎝ -2,100KeV/2E15 ㎝ -2,
    200KeV/2E15 ㎝-2重複上述實驗,經由1100℃ 60 分鐘氮氣環境下活
    化,發現n 型氮化鎵薄膜載子濃度值由8×1016 ㎝-3 變成4×1019 ㎝-3
    (面載子濃度值約2.5×1015 ㎝-2),活化率提高至53﹪。
    在歐姆電極方面,我們以電子束蒸鍍 鈦/鋁/鉑/金作為離子佈植
    試片之n 型歐姆接觸。將矽離子佈植試片以1000℃ 30 分鐘活化後,
    其特徵接觸電阻值(specific contact resistance ñc)為5×10-4 Ω
    -㎝ 2,經過600℃氮氣環境下熱處理後特徵接觸電阻值降低到1×10-6
    Ω-㎝ 2。而相同的矽離子試片以1000℃ 15 分鐘及30 分鐘活化後鍍
    上透明電極(ITO),其特徵接觸電阻值ñc 分別為2×10-4 Ω-㎝ 2 及8
    ×10-5 Ω-㎝ 2。而極薄的金屬層 鎳/金(Ni/Au=40Å/100Å)作為P
    型氮化鎵薄膜之歐姆接觸以改善藍光二極體的透光性。
    利用氦-鎘雷射量測光激螢光譜,發現所有活化後的n 型氮化鎵薄
    膜都不發光。我們推測應是高劑量(1.2×1016 ㎝- 2)摻雜造成氮化鎵
    薄膜表面及結構的破壞。 最後,經由簡單的黃光製程,我們成功的
    作出藍色發光二極體,藉由p-n 接面之電流電壓特性曲線來驗證前述
    的霍爾系統量測的結果。在40mA 的電流驅動下其發光波長及半高寬
    分別為415nm 及80nm。在80mA 的電流驅動下其發光波長及半高寬分
    別為385nm 及80nm。在20mA 的電流驅動下具有約34V 之順向偏壓
    (Vf)。在-10ìA 的電流驅動下具有約-19V 逆向偏壓(Vr)



    GaN, activation of Mg-doped GaN, Hall measurement and fabrication of
    GaN n+-p junction. In addition, the device processing technologies were
    also paid attention to investigate the low resistance ohmic contacts of
    GaN. The current-voltage (I-V) characteristics were measured at room
    temperature using an HP4145B semiconductor parameter analyzer.
    The characteristics of multiple high dose Si implanted GaN were
    studied. 28Si+ implantation into Mg-doped and unintentionally doped GaN,
    followed by thermal annealing in N2, air, Oxygen ambiences has been
    performed to achieve n+-GaN layers. We have successfully convert all
    p-GaN to n type for annealing temperature from 750℃~1000℃. Multiple
    implantations are used to form a uniform Si implanted region. The
    implantation conditions (dose/energy) were 2´1015 cm-2/40 KeV, 5´1015
    cm-2/100 KeV and 5´1015 cm-2/200 KeV. The carrier concentration of the
    film changed from 3×1017 cm-3 ( p-type ) to 5×1019 cm-3 ( n-type, Sheet
    carrier concentration ns =3×1015 cm-2 ) when the Si-implanted p-type
    GaN was annealed in N2 ambience at 1000℃. The activation efficiency
    of Si in Mg-doped GaN is 27%. Decrease the implantation dose to 8´1014
    cm-2/40 KeV, 2´1015 cm-2/100 KeV and 2´1015 cm-2/200 KeV, the carrier
    concentration of the film changed from 8×1016 cm-3 ( n-type ) to 4.2×
    1019 cm-3 ( n-type, Sheet carrier concentration ns=2.5×1015 cm-2 ) when
    the Si-implanted un-doped n-type GaN was annealed in N2 ambience at
    1100℃. The activation efficiency of Si in un-doped GaN is as high as 53
    ﹪. In addition, specific contact resistance( rc ) of Ti/Al/Pt/Au ohmic
    contacts to n+-GaN, which formed by 28Si+ implantation in p-type GaN,
    were also evaluated by transmission line model( TLM ). The rc is as low
    as 1.5×10-6 W-cm2 when the metal contact was annealed in N2 ambience
    at 600℃. The specific contact resistance ( rc )of Indium tin Oxide(ITO)
    as-deposited on n+-GaN which formed by 28Si+ implantation in p-type
    GaN and annealing 1000℃ 15min and 30min were 2×10-4 Ù-㎝ 2 and 8
    ×10-5 Ù-㎝ 2 .
    The as-grown material and these implanted samples were also
    characterized by photoluminescence (PL) using a 10mW He-Cd Laser
    (325nm) excitation source with the spectra taken at room temperature.
    The PL spectra showed that no emission peaks of these implanted
    samples, this may be attributed that surface damages and amorphized
    structure of GaN by high dose (1.2E16 cm-2) 28Si+ implantation.
    The activation of metal organic chemical vapor deposition-grown
    Mg-doped GaN by N2 annealing has been investigated. P type
    conductivity with a net acceptor concentration of 1×1018 cm-3 and a
    mobility of 4 ㎝2/VS was obtained by annealing 750℃. Variable
    temperature Hall measurement have revealed that activation energy of
    Mg-acceptor was 109meV after 750℃ anneal.
    Finally , the n+-p LED by 28Si+ implantation are fabricated and
    characterized at room temperature(RT). The room temperature (RT)
    current-voltage characteristic exhibits that a turn on voltage measured at
    100ìA was equal to 1.5V; the forward voltage measured at 20mA was
    equal to 34V. The breakdown voltage measured at -10ìA was equal to
    -19V. The room temperature (RT) electroluminescence (EL) is dominated
    by an emission at 415nm(2.98eV) with a linewidth of 80nm(600meV) at
    injection current of 10~50mA. When the injection current increases up to
    60mA~80mA, the emission is dominated by the peak at 385nm(3.22eV).
    The EL intensity linearly increases with increasing injection current.
    As mentioned above of n+-p junction, this supports the Hall effect
    data for convert the p-GaN to n type conduction.

    Abstract (in Chinese) Abstract (in English) Acknowledgment Figure Captions Chapter 1 Introduction 1-1 The Background of Research on GaN … … … … … … … … ...1 1-2 Overview of This Thesis … … … … … … … … … … … … … …2 1-3 Reference … … … … … … … … … … … … … … … … … … …. ..4 Chapter 2 Experimental Techniques and Related Analysis Systems 2-1 Ion Implantation… … … … … … … … … … … … … … … … … 5 2-2 Doping Profile Analysis Secondary Ion Mass Spectrometry.5 2-3 Carrier Concentration and Mobility Measurement by Hall Measurement … … … … … … … … … … … … … … … … … … . . 6 2-4 Photoluminescence … … … … … … . . … … … … … … … … … … 7 2-5 X-Ray Diffraction … … … … … . … … … … … … … . … … … … 8 Chapter 3 Multiple High Dose Si Implantation in GaN 3-1 Introduction… … … … … … … … … … … … … … … … … … . . 11 3-2 Experiment … … … … … … … … … … … … … … … … … …...13 3-3 Ion Range and Distribution of Si Implantation… … . . … … . . 1 5 3-4 Reference … … … … … … … … … … … … … … … … … … … . . 1 8 Chapter 4 Activation of Si Implanted GaN 4-1 Electrical Result of Activated GaN by Hall Measurement. 19 4-1-1 Electrical Result of Multiple High Dose (1.5E16) Si Implanted GaN… … … … … … … … … … … … … … 19 4-1-2 Electrical Result of Multiple High Dose (1.2E16) Si Implanted GaN … … … … … … … … … … … … … … … . 22 4-1-3 Electrical Result of Multiple High Dose (4.8E15) Si Implanted GaN … … … … … … … … … … … … … … … . 26 4-1-4 Structure Analysis of Activated GaN by X-ray Diffraction … … … … … … … … … … … … … … … … … 28 4-1-5 Conclusion… … … … … … … … … … … … … … … … 29 4-2 Variable Temperature Hall Measureme nt of Si Implanted GaN … … … … … … … … … … … … … … … … … … … … …..30 4-3 Low Resistance Ohmic Contact on n-type GaN … … … … ..31 4-3-1 Ti/Al/Pt/Au Ohmic Contact to n+-GaN… … … … … … 3 3 4-3-2 Indium tin Oxide Ohmic Contact to n+-GaN… … … … 3 5 4-4 Reference … … … … … … … . … … … … … … … … … … … …..38 Chapter 5 Fabrication of GaN n+- p Diode 5-1 Introduction… … … … … … … … … … … … … … … … … . . … 40 5-2 Characterization of Annealing Mg-doped GaN … … . … … . .42 5-2-1 Experiment … … … … … … … … … … … … . … … … . … . 44 5-3 Process of LED Device … … … … … … … … … … … … … …4 8 5-4 Characteristics of the n+-p LED by Si Implanted GaN … … 50 5-5 Reference … … … … … … … … … … … … … … … … . … … … 5 3 Chapter 6 Conclusion and Future Work 6-1 Reference … … … … … … … … … … … … … … … … . … … … 5 7

    Reference in Chapter 1
    1. R. Juza and H. Hahn, Anorg. Allegem. Chem., Vol.234,282(1940).
    2. W. R. L. Lambert and B. Segall, “Band structure of pure GaN”,
    Properties of Group III Nitrides, J. Edgar, Editor, INSPEC, London
    1994.
    3. S. Nakamura, M. Senoh, and T. Mukai, “Highly P-Type Mg-Doped
    GaN Films Grown with GaN Buffer Layers”, Jpn. J. Appl. Phys.
    Vol.30, p.L1708-11(1991).
    4. H. Amano, M. Kitoh, K. Hiramatsu, and I. Akasaki, “Gallium
    Arsenide and Related Compounds 1989”, T. Ikoma and H. Watanabe,
    Eds. Bristol, U.K.: UKIOP, 1990, pp. 725–730.
    5. S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett., Vol.64. p. 1687,
    (1994.)
    6. S. J. Pearton, C. B. Vartuli, J. C. Zolper, C. Yuan, and R. A. Stall,
    Appl. Phys. Lett. Vol.67, 1435 (1995).
    7. J. C. Zolper, R. G. Wilson, S. J. Pearton, and R. A. Stall, Appl. Phys.
    Lett. Vol.68, 1945 (1996)
    8. Y.K. Song, M. Kuball, A. V. Nurmikko, G. E. Bulman, K.
    Doverspike, S.T. Shappard, T. W. Weeks, M. Leonard, H. S. Kong,
    H. Dieringer, and J.Edmonds, Appl. Phys. Lett. Vol.72, 1418 (1998)
    S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T.
    Matsushita, H. Kiyoku, Y. Sugimoto,T. Kozaki, H. Umemoto, M.
    Sano, and K. Chocho, ibid. 72,211(1998)
    9. Yoshida and J. Suzuki, Jpn. J. Appl. Phys., Part 2 Vol.37, L482
    Reference in Chapter 5
    1. C. P. Kou, R. M. Flecther, T. D. Ostenowski, M. C. Lardizabal,
    M. G. Craford, and V. M. Robbins, Appl. Phys. Lett., Vol.57, p.2937,
    (1990)
    2. H. Sugawara, M. Ishikawa, and G. Hatakoshi, Appl. Phys. Lett.,
    Vol.58, p. 1010, (1991).
    3. D. Dingle, K. L. Shaklee, R. F. Leheny, and R. B. Zetterstrom,
    Appl. Phys. Lett., Vol. 64, p. 1377, (1974).
    4. J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, RCA Rev.,
    Vol. 32, p. 383, (1971).
    5. H. Amano, M. Kitoh, K. Hiramatsu, and I. Akasaki, “Gallium
    Arsenide and Related Compounds 1989”, T. Ikoma and H.
    Watanabe, Eds. Bristol, U.K.: UKIOP, pp. 725–730. (1990).
    6. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett., Vol.
    64, p. 1687, (1994)
    7. S. Nakamura, J. Cryst. Growth, Vol. 145, p. 911, (1994).
    8. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett., Vol.
    64, p. 1687, (1994).
    9. AMANO, H., KITO, M., HIRAMATSU, K., and AKASAKI, I.:
    “p-type conduction in Mg-doped GaN treated with low-energy beam
    irradiation”, Jpn. J. Appl. Phys., Vol.28, pp. L2212-L2214, (1989).
    10. AMANO, H., KITO, M., HIRAMATSU, K., and AKASAKI, I.:
    “Growth and luminescence properties of Mg-doped GaN prepared
    by MOVPE: J. Electrochem. Soc., Vol.137, pp.1639-1641, (1990)
    11. AMANO, H., AKASAKI, I., KOZAWA, T., HIRAMATSU, K.,
    54
    SAWAKI, N.: “Electron beam effects on blue luminescence of
    zinc-doped GaN”, J. Lumin. Vol.41&42, pp.121-122, (1988)
    12. NAKAMURA, S., MUKAI, T., SENOH, M., and I WASA,
    N., ”Thermal annealing effects on p-type Mg-doped GaN films”, Jpn.
    J. Appl. Phys., Vol.31, pp. L139-L142, (1992).
    13. J. K. Sheu and Y. K. Su, G. C. Chi and B. J. Pong, C. Y. Chen, C. N.
    Huang, and W. C. Chen, “Photoluminescence spectroscopy of
    Mg-doped GaN” J. Appl. Phys., Vol. 84, No. 8, (1998).
    14. J. K. Sheu and Y. K. Su, G. C. Chi, M.J. Jou, C.C. Liu, C.M. Chang,
    “Indium tin Oxide ohmic contact to highly doped n-GaN”
    Solid-State Electronics Vol.43 p.2081-2084, (1999).
    15. J. K. Sheu and Y. K. Su, G. C. Chi, M.J. Jou, C.C. Liu, Appl. Phys.
    Lett. Vol.74, p. 2340, (1999).
    16. R. P. Vaudo, I. D. Geoepfert, T. D. Moustakas, D. M. Beyea, T. J.
    Frey, and K. Meehan, J. Appl. Phys., Vol. 79, p.2779, (1996)
    17. N. Grandjean, J. Massies, M. Leroux, and P. Lorenzini, ”Ultraviolet
    GaN light-emitting diodes grown by molecular beam epitaxy using
    NH3” Appl. Phys. Lett. Vol.72, p. 82-84, (1998).
    18. X.A. Cao, J.R. LaRoche, F. Ren, S.J. Pearton, J.R. Lothian R.K.
    Singh, R.G. Wilson, H.J. Guo, S.J. Pennycook, “Implanted p-n
    junctions in GaN”, Solid-State Electronics, Vol.43, p.1235-1238
    Reference in Chapter 6
    1. X. A. Cao, J. R. LaRoche, F. Ren, S.J. Pearton, J.R. Lothian R.K.
    Singh, R.G. Wilson, H. J. Guo, S.J. Pennycook, “Implanted p-n
    junctions in GaN”, Solid-State Electronics, Vol.43, p.1235-1238
    (1999)
    2. J. C. Zolper, R. J. Shul, and A.G. Baca, R.G. Wilson, S.J. Pearton, R.A.
    Stall, ”Ion-implanted GaN junction field effect transistor” Appl. Phys.
    Lett. Vol.68, p. 2273-2275, (1996).
    3. J. C. Zolper, D. J. Rieger, and A.G. Baca, S.J. Pearton and J. W. Lee,
    R.A. Stall, ” Sputter AlN encapsulant for high temperature annealing
    GaN”, Appl. Phys. Lett. Vol.69, p. 538-540, (1996).
    Reference in Chapter 4
    1. X. A. Cao, C. R. Abernathy, R. K. Singh, S. J. Pearton, M. Fu, V.
    Sarvepalli, J. A. Sekhar, J. C. Zolper, D. J. Rieger, J. Han, T. J.
    Drummond and R. J. Shul, Appl. Phys. Lett. Vol.73, 229(1998).
    2. W. C. Lai, M. Yokoyama, C. C. Tsai, C. S. Chang, J. D. Guo, J. S.
    Chan and C. Y. Chang, Jpn. J. Appl. Phys, Vol.38, L802(1999)
    3. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu
    and W. C. Hung, Appl. Phys. Lett. Vol.74, 2340 (1999).
    4. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu,
    W. C. Hung, J. S. Bow and Y. C. Yu, J. Vac. Sci & Tech B. Vol.18,
    729 (2000).
    5. X. A. Cao, J. R. LaRoche, F. Ren, S. J. Pearton, J. R. Lothian, R. K.
    Singh, R. G. Wilson, H. J. Guo and S. J. Pennycook, Solid-State
    Electronics Vol.43, 1235(1999).
    6. S. Nakamura, N. Iwasa, Senoh, and T. Mukai, M, Jpn. J. Appl.
    Phys., Vol.31, 1258 (1992).
    7. J.C. Zolper, in GaN and Related Materials, ed. S.J. Pearton (Gordon
    and Breach, (1997).
    8. J. K. Sheu, M. S. Tsai, C. H. Kuo, L. W. Wu, and G. C. Chi, will be
    published elsewhere.
    9. J. S. Foresi and T. D. Moustakas, Appl. Phys. Lett. Vol.62, 2859
    (1993).
    10. M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen, and
    H.Morkoc¸,Appl. Phys. Lett. Vol.64, 1003 (1994).
    39
    11. S. C. Binari, H. B. Dietrich, G. Kelner, L. B. Rowland, K.
    Doverspike, and D. K. Gaskill, Electron. Lett. Vol.30, 909 (1994).
    12. P. Hacke, T. Detchprohm, K. Hiramatsu, and N. Sawaki, Appl. Phys.
    Lett.Vol.63, 2676 (1993).
    13. C. T. Lee and H. W. Kao, Appl. Phys. Lett. Vol.76, 2364 (2000).
    14. F. Zhu, P. Jennings, J. Cornish, G. Hefter, K. Luczak, Sol. Energy
    15. Mater. Sol. Cells Vol. 49 163. (1997)
    16. F. Zhu, T. Fuyuki, H. Matsunami, J. Singh, Sol. Energy Mater. Sol.
    17. Cells Vol. 39 (1995)
    18. J.S. Kim, M. GranstroÈm, R.H. Friend, et al., J. Appl. Phys.
    p.6859.Vol. 84 (1998)
    19. C.C. Wu, C.I. Wu, J.C. Sturm, A. Kahn, Appl. Phys. Lett.
    P.1348.Vol.70 (1997)
    Reference in Chapter3
    1. J. I. Pankove and J. A. Hutchby, Appl. Phys. Lett. Vol.24, 281 (1974).
    2. J. I. Pankove and J. A. Hutchby, J. Appl. Phys. Vol.47, 5387 (1976).
    3. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl.
    Phys., Vol.28, L2112(1989).
    4. S. Nakamura, N. Iwasa, Senoh, and T. Mukai,M, Jpn. J. Appl. Phys.,
    Vol.31, 1258 (1992 ).
    5. S. J. Pearton, C. R. Abernathy, C. B. Vartuli, J. C. Zolper, C. Yuan, a
    nd R. A. Stall, Appl. Phys. Lett. Vol.67, 1435 (1995).
    6. J. C. Zolper, R. G. Wilson, S. J. Pearton, and R. A. Stall, Appl. Phys.
    Lett. Vol.68, 1945 (1996).
    7. J. H. Edgar, “Properties of Group III Nitrides”, p273(INSPEC,
    London, United Kingdom, 1994)
    8. J. A. Van Vechten, Phys. Rev. B7, 1479(1973)
    9. H. H. Tan, J. S. Williams, J. Zou, D. J. H. Cockayne, S. J. Pearton
    and R. A. Stall, Appl. Phys. Lett. Vol.69, 2364(1996).
    10. C. J. Eting, P. A. Grudowski, R. D. Dupuis, H. Hsia, Z. Tang, D.
    Becher, H. Kou, G. E. Stillman and M. Feng, Appl. Phys. Lett.
    Vol.73, 3875(1998).
    11. X. A. Cao, C. R. Abernathy, R. K. Singh, S. J. Pearton, M. Fu, V.
    Sarvepalli, J. A. Sekhar, J. C. Zolper, D. J. Rieger, J. Han, T. J.
    Drummond and R. J. Shul, Appl. Phys. Lett. Vol.73, 229(1998).
    12. W. C. Lai, M. Yokoyama, C. C. Tsai, C. S. Chang, J. D. Guo, J. S.
    Chan and C. Y. Chang, Jpn. J. Appl. Phys, Vol.38, L802(1999)

    QR CODE
    :::