| 研究生: |
楊禮宗 Li-Tsung Yang |
|---|---|
| 論文名稱: |
採用不定資料分布存取方案與基數2/4分裂架構實現記憶體式快速傅立葉轉換運算的晶片電路 Implementation of Memory-based FFT Using Inconstant-distribution Access Scheme and Split-radix 2/4 Architecture |
| 指導教授: |
薛木添
Muh-Tian Shiue |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系在職專班 Executive Master of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 記憶體存取方案 、分裂基數 、快速傅立葉 |
| 外文關鍵詞: | Memory access scheme, Split-radix, FFT |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的重點是使用文獻中所發表的記憶體式快速傅立葉轉換運算架構(Memory base FFT) 之分裂基數Split-radix 2/4,結合Hong所發表的普遍化不定資料分布存取方案 [19],整合出適用於小至16點大到4096或8192點數的快速傅立葉轉換運算電路架構,並適用於無線通訊系統中的正交分頻多工 (OFDM) 多載波調變技術。
採用記憶體快速傅立葉運算架構比管線式快速傅立葉運算架構 (Pipeline base FFT)可節省電路面積、硬體成本、較高的蝴蝶運算單元硬體使用率和較低的存取功率消耗;而使用分裂基數 Split-radix 2/4 理論可減少蝴蝶運算單元 (Butterfly unit) 電路的複雜度,又可減少單一級數Pass運算時間,進而降低總運算時間;同時,記憶體存取方案 (Memory access scheme) 採用Hong所發表的普遍化不定資料分布存取方案,可固定蝴蝶運算單元架構,不需隨每一級數Pass做變動調整,僅需在蝴蝶運算單元和記憶體單位之間的資料交換存取控制電路做規律的邏輯排序。
綜合採取上述分別在演算法理論、運算架構複雜度、運算單元和記憶單元的硬體面積等優點,構思出本電路並實現,先後以 C++、MATLAB、Verilog HDL語言推導各種點數的正確性,最後再以 RTL Simulation、ISE 14.4進行模擬和合成 (Synthesis),以及使用Xilinx Virtex 5 XC5VLX330 FPGA board進行驗證。
The focus of this thesis is to use the split-radix 2/4 published in the memory base fast Fourier transform (FFT) operation architecture. It combines with the generalized inconstant-distribution access scheme proposed by Hong to realize a circuit for the FFT operation ranging from as small as 16 points to as large as 4096 or 8192 points. In addition, it suits for orthogonal frequency division multiplexing (OFDM) multi-carrier modulation technology in wireless communication systems.
Comparing to pipeline-based FFT architecture, memory-based FFT architecture can obtain lower hardware cost, higher usage ratio of hardware in butterfly unit, and lower power consumption. While using split-radix 2/4 algorithm to reduce complexity of the butterfly unit circuit, the single-pass operation time can also be reduced, thereby reducing the total operation time. At the same time, the memory access scheme using the generalized inconstant- distribution access scheme proposed by Hong can have fixed butterfly operations. The butterfly unit structure does not have necessary to be adjusted with each Pass. It only needs to perform regular logical ordering on the data exchange access control circuit between the butterfly operation unit and the memory unit.
Based on the above-mentioned advantages of the algorithm, considering complexity of computing architecture, hardware area of computing unit and memory unit, etc., this circuit is conceived and implemented, and the verification of various FFT points is derived in C ++, MATLAB, Verilog HDL, and finally uses RTL Simulation, ISE 14.4 for behavior simulation and Circuit Synthesis, and Xilinx Virtex 5 XC5VLX330 FPGA board for evaluation.
[1] S. Bouguezel, M. O. Ahmad, and M. N. S. Swam, “Improved radix-4 and radix-8 FFT algorithms”, in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp. III 561–564, May 2004.
[2] S. He and M. Torkelson, ”A New approach to Pipeline FFT processor”, in Proc. Int. Parallel Processing Symp., pp. 766–770, 1996.
[3] S. He and M. Torkelson, “Designing pipeline FFT processor for OFDM (de)modulation”, in Proc. URSI Int. Symp. Signals Syst. Elect., pp. 257–262, 1998.
[4] James W.Cooley, and John W. Tukey, ”An algorithm for the machine calculation of complex Fourier series”, Mathematics of Computation, Vol. 19, no. 90, pp. 297301, Apr. 1965.
[5] P. Duhamel and H. Hollmann, “Split-radix FFT Algorithm”, Eletronic Letters, Vol.20, No.1 pp. 14-16, Jan. 1984.
[6] Trio Adiono, Aditya F. Ardyanto, Nur Ahmadi, Idham Hafizh, Septian G. P. Putra “An SoC Architecture for Real-Time Noise Cancellation System Using Variable Speech PDF Method”, International Journal of Electrical and Computer Engineering (IJECE) , Vol. 5, No. 6, pp. 1336~1346, December 2015.
[7] B. M. Bass, “A low-power, high-performance, 1024-point FFT processor”, IEEE J.
Solid-State Circuits, Vol. 34, no. 3, pp. 380–387, Mar. 1999.
[8] Y. Chen, Y.-W. Lin, and C.-Y. Lee, “A block scaling FFT/IFFT processor for Wimax applications”, in Proc. 2nd IEEE Asian Solid-State Circuits Conf., Hangzhou, China, pp. 203–206, Nov. 2006.
[9] S. Magar, S. Shen, G. Luikuo, M. Fleming, and R. Aguilar, “An application Specific DSP chip set for 100 MHz data rates”, in Proc. Int. Conf. Acoustics, Speech, and Signal Processing, pp. 1989–1992., Apr. 1988.
[10] B. M. Bass, “A low-power, high-performance, 1024-point FFT processor”, IEEE J.Solid-State Circuits, Vol. 34, no. 3, pp. 380–387, Mar. 1999.
[11] M. C. Pease, “Organization of large scale Fourier processors”, IEEE Trans. Circuits Syst. Vol. 16, pp. 474–482, July 1969.
[12] D. Cohen, “Simplified control of FFT hardware”, IEEE Trans. Acoust., Speech Signal Processing, Vol. ASSP-24, pp. 577-579, Dec. 1976.
[13] L. G. Johnson, “Conflict free memory addressing for dedicated FFT hardware”, IEEE Trans. Circuits Syst. II, Vol. 39, pp. 312–316, May 1992.
[14] C. P. Hung and S. G. Chen, “Design of an efficient variable length FFT processor” , IEEE Int. Symp. on Circuits Syst., Vol. 2, pp. 833-836, May 2004.
[15] J. H. Takala, T. S. Jarvinen, and H. T. Sorokin, “Conflict-free parallel memory access scheme for FFT processors”, IEEE Int. Symp. on Circuits Syst., Vol. 4, pp. 524-527, May 2003.
[16] X. Xiao, E. Oruklu, and J. Saniie, “An efficient FFT engine with reduced addressing logic”, IEEE Trans. Circuits Syst. II, Vol. 55, no 11, pp. 1149–1153, November 2008.
[17] X. Xiao, E. Oruklu, and J. Saniie, “Fast memory addressing scheme for radix-4 FFT implementation”, IEEE Int. Conf. Electro/Information Tech., pp. 437–440, June 2009.
[18] Weihua Zheng, Kenli Li, and Keqin Li, “Scaled Radix-2/8 Algorithm for Efficient Computation of Length-N = 2m DFTs”, IEEE TRANSACTIONS ON SIGNAL PROCESSING, Vol. 62, no. 10, May 15, 2014.
[19] 洪孟嶢, “記憶體式快速傅立葉轉換運算架構的普遍化不定資料分布存取方案”, 國立中央大學,電機工程研究所碩士論文,民國104年6月。
[20] Yutian Zhao, Ahmet T. Erdogan and Tughrul Arslan, “A low-power and domain-specific reconfigurable FFT fabric for system-on-chip applications”, Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium, 18 April 2005.
[21] 楊耀先, “可自我測試且具成本效益之記憶體式快速傅利葉轉換處理器設計” , 國立中央大學,電機工程研究所碩士論文,民國96年7月。
[22] Y. Zhao, A.T. Erdogan, and T. Arslan, ”A novel low-power reconfigurable FFT processor”, in Proc. IEEE Int. Symposium on Circuits and Systems (ISCAS), pp.41 – 44, May 2005.
[23] Y.H. Lee, T.H. Yu, K.K. Huang and A.Y. Wu, “Rapid IP design of variable-length cached-FFT processor for OFDM-based communication systems”, in Proc. IEEE Workshop on Signal Processing Systems Design and Implementation, pp. 62 – 65, Oct 2006.