| 研究生: |
郭鎮源 Chen-Yuan Kuo |
|---|---|
| 論文名稱: |
逕流及崩塌對崖錐堆積內部孔隙水壓之效應 The Effect of Runoff and Collapse on the Internal Water Pressure for the Talus |
| 指導教授: |
周憲德
Hsien-Ter Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 動態孔隙水壓力 、動態壓密 、壓密理論 、逕流 、入渗 |
| 外文關鍵詞: | consolidation, dynamic water pressure, pore water pressure, improvement depth |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高強度降雨形成之地表水入渗至土體後,造成土層內部孔隙水壓增加,是造成邊坡淺層崩塌主要原因之一。本研究主要以壓密理論為基礎,使用方型石柱探討土層表面受到動態壓密以及逕流水沖擊下,土層內部動態孔隙水壓力分布及傳遞之行為機制。實驗以均勻級配之礫石及玻璃砂,於不同土體厚度、夯實程度與撞擊能量下進行探討。實驗結果顯示土體受到動態壓密產生之動態孔隙水壓為逕流沖擊之10~20倍;厚度較長之土體,在同一能量撞擊時將產生一影響深度,於此深度產生較大之動態孔隙水壓,若土體小於此臨界厚度,則在土層底部產生較大之動態孔隙水壓;排列鬆散土層受到動態壓密時底部將激發較大之動態孔隙水壓;逕流沖擊土層造成表面捲增掏刷,且玻璃砂土層底部不透水層有向上排水之現象。
The rainfall induced infiltration increases the pore water pressure, and leads to cause the failure of the shllow slopes. This study experimentally examines the response of pore water pressure during the progressing of the wetting front for the talus. Both the impact from run-off and the variations of the dynamic water and seek slumping are considered pressure depend on porosity and the depth of soil and falling height of the run-off slumping block. The slumping block generates the higher dynamic water pressure than the impacting water. It is found that the soil layer has a improvement depth, which generates the maximum dynamic water pressure. When the soil layer is less than the improvement depth, the maximum dynamic pore pressure occurs in the bottom. When the run-off impact the soil surface, it causes the soil erosing wear for
ground surface.
1. Wang G.., Kyoji Sassa, (2003), ” Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content”, Engineering Geology, 69, 109–125.
2. Wang G., Kyoji Sassa, Hiroshi Fukuoka; and Takahiro Tada, (2007), “Experimental Study on the Shearing Behavior of Saturated Silty Soils Based on Ring-Shear Tests”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 3.
3. Hansbo, S., (1978), "Dynamic Consolidation of Soil by a Falling Weight," Ground Engineering, Vol. 11, No. 5 , pp. 27-36
4. Iverson, .R.M., M.E. Reid & R.G.. LaHusen, (1997), “Debris Flow Mobilization from Landslides”, Annu. Rev. Earth Planet. Sci. 25, 85-138.
5. Pan, J.L., A.R. Selby, (2002), “Simulation of dynamic compaction of loose granular soils”, Advances in Engineering Software 33, 631–640
6. Jafarzadeh. F, (2006), “Dynamic Compaction Method in Physical Model Tests”, Scientia Iranica, Vol. 13, No. 2, pp 187-192.
7. M. Gunaratne, M. Ranganath, S. Thilakasiri, G. Mullins, P. Stinnette, C. Kuot, (1996), “Study of Pore Pressures Induced in Laboratory Dynamic Consolidation”, Computers and Geotechnics, Vol. 18, No. 2, pp. 127-143.
8. Ng, C. W. W. and Q. Shi, (1998), “A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage”, Computers and Geotechnics, 22(1), 1-28.
9. P. W. Mayne, J. S. Jones, Jr.,(1983),” IMPACT STRESSES DURING DYNAMIC COMPACTION”, Journal of Geotechnical Engineering, Vol. 109, No. 10.
10. Poran, C.J. and Rodriguez, J.A., (1992), "Design of dynamic compaction", Canadian Geotechnical Journal, 29(5), pp 796-802
11. Rahardjo, H., T. T. Lim, M. F. Chang and D. G. Fredlund., (1995), “Shear-Strength Characteristics of a Residual Soil”, Canadian Geotechnical Journal, 32(1), 60-77.
12. 日本道路協會(1986),"共同溝設計指針"。
13. 周憲德、廖偉民,「孔隙水壓對溪床土石流發生機制之影響」,中華水土保持學報,第二十九卷,第三期,1998 年,第211-217 頁。
14. 林美聆、王幼行,「地表水及地下水對土石流破壞型態之影響」,地工技術, 第七十四期,1999年,第29-38 頁。
15. 廖偉民,「土石流潛勢判定模式及土石壩滲流破壞之研究」,博士論文,國立中央大學土木工程研究所,中壢,2001。
16. 林志欣,「圓型砂柱探討入滲效應之研究」,碩士論文,國立中央大學土木工程研究所,中壢,2005。