跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊茲婷
Zih-Ting Yang
論文名稱: 石墨烯奈米帶之電子熱整流探討:石墨烯異質結構拓樸態的傳輸應用
Investigation of electron heat rectification in graphene nanoribbons: transport applications through topological states of graphene heterostructures
指導教授: 郭明庭
Ming-Ting Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 53
中文關鍵詞: 石墨烯電子熱整流
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文透過理論研究探討帶有空洞的非對稱長度扶手椅型石墨烯奈米帶(Armchair graphene nanoribbons, AGNRs)異質結構中的電子熱流,並針對拓樸態(topological states, TSs)對熱流調控所帶來的影響。本篇利用雙局部化態的Hubbard 模型,計算經由串聯耦合拓樸態(serially coupled TSs, SCTSs)的穿隧電流。由於9-7-9 AGNR異質結構的TSs與導電帶和價電帶良好隔離,因此可以有效地減少在電荷傳輸中因溫度所引起的熱噪音。為了提升熱整流比(𝜂𝑄),我們透過改變9 AGNR的長度調控電極與拓樸態的穿隧率,並在不影響拓樸態的穩定下適度引入空洞以抑制聲子熱流。本篇研究展現AGNR異質結構在熱整流的展望,特別是拓樸態之間的庫倫交互作用以及異質結構的調整對熱流的影響。


    This study presents a theoretical investigation of electron heat transport in asymmetrical length armchair graphene nanoribbon (AGNRs) heterostructures with vacancies, focusing on the influence of topological states (TSs) on heat current regulation. We use a two-site Hubbard model to calculate the tunneling current through serially coupled topological states (SCTSs). In the 9-7-9 AGNR heterostructure, the TSs are well isolated from both the conduction and valence subbands, effectively suppressing thermal noise arising from temperature fluctuations during charge transport. To enhance the heat rectification ratio (𝜂𝑄), we modulate the tunneling rate between the electrodes and the TSs by varying the length of the 9 AGNR segment. Additionally, vacancies are introduced without affecting the stability of the TSs to suppress phonon heat transport. This study highlights the potential of AGNR heterostructures for thermal rectification, particularly emphasizing the role of inter-TS Coulomb interactions and structural modulation in controlling electron heat transport.

    摘要................................................................................................................................ I Abstract........................................................................................................................ II 圖目錄........................................................................................................................... V 表目錄........................................................................................................................ VII 第一章、 導論........................................................................................................ 1 1-1 前言..................................................................................................................... 1 1-2 熱電效應............................................................................................................. 2 1-3 石墨烯................................................................................................................. 4 1-3-1 石墨烯奈米帶.............................................................................................. 5 1-4 電子跳躍效應與庫倫交互作用......................................................................... 7 1-4-1 電子跳躍效應.............................................................................................. 7 1-4-2 庫倫交互作用.............................................................................................. 7 1-5 研究動機............................................................................................................. 8 第二章、研究方法與系統模型.................................................................................. 10 2-1 系統模型........................................................................................................... 10 2-2 系統總能........................................................................................................... 11 2-3 電子跳躍強度................................................................................................... 13 2-4 電流公式........................................................................................................... 15 第三章、電子熱流經由9-7-9 AGNR異質結構中拓樸態的影響及分析 .............. 19 3-1 前言................................................................................................................... 19 3-2 溫度對熱電壓以及電子熱流的影響............................................................... 19 3-3 能階對熱電壓以及電子熱流的影響............................................................... 23 3-4 拓樸態間庫倫交互作用對熱電壓以及電子熱流的影響 .............................. 27 3-5 穿隧率對於電子熱流的影響........................................................................... 29 3-6 電子跳躍強度對於熱電壓以及電子熱流的影響........................................... 30 3-7 包利自旋阻塞配置下的電子熱流分析........................................................... 34 第四章、結論.............................................................................................................. 39 參考文獻...................................................................................................................... 40

    [1] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S.
    V. , Grigorieva, I. V. and Firsov, A. A., Electric field effect in atomically thin carbon
    films. Science 306, 666 (2004).
    [2] Geim, A. K. and Grigorieva, I. V., Van der Waals heterostructures. Nature 499,
    419–425 (2013).
    [3] Cai, J., Ruffieux, P., Jaafar, R. et al., Atomically precise bottom-up fabrication of
    graphene nanoribbons. Nature 466, 470–473 (2010).
    [4] Harman T. C. and Honig J. M., Thermoelectric and thermomagnetic effects and
    applications. (McGraw-Hill, New York, 1967).
    [5] Velmre E., "Thomas Johann Seebeck and his contribution to the modern science
    and technology", Electronics Conference (BEC) 2010 12th Biennial Baltic, Tallinn
    (2010).
    [6] Roberts N. A. and Walker D. G., A review of thermal rectification observations
    and models in solid materials, International journal of thermal science 50 648 (2011).
    [7] Zhu J., Hippalgaonkar K., Shen S., Wang K. V., Abate Y., Lee S., Wu J. Q., Yin X.
    B., Majumdar A. and Zhang X., Temperature-Gated Thermal Rectifier for Active Heat
    Flow Control, Nano Lett. 14 4867 (2014).
    [8] Wang H. D., Hu S. Q., Takahashi K., Zhang X., Takamatsu H. and Chen J.,
    Experimental study of thermal rectification in suspended monolayer graphene, Nat.
    commun. 8 15843 (2017).
    [9] Li B. W., Wang L. and Casati G., Thermal diode: Rectification of heat flux, Phys.
    Rev. Lett. 93 184301 (2004).
    [10] Martinez-Perez M. J., Fornieri A. and Giazotto F., Rectification of electronic heat
    current by a hybrid thermal diode, Nat. Nanotech. 10 303 (2015).
    [11] Geim A. K. and Novoselov K. S., The rise of graphene. Nat. Mater. 6, 183
    (2007).
    [12] Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., and Geim A. K.,
    The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).
    40
    [13] Chen Z., Lin Y. M., Rooks M. J. and Avouris P., Graphene nanoribbon
    electronics, Physica E: Low-dimensional Systems and Nanostructures 40, 228 (2007).
    [14] Fritzsche H. and Pollak M., Hopping and related phenomena. Vol. 2. World
    Scientific (1990).
    [15] Khademhosseini, V., Ahmadi M. T., Afrang S., Ismail R., The Analysis of
    Coulomb Blockade in Fullerene Single Electron Transistor at Room Temperature. J.
    Comput. Theor. Nanosci, 14(11), 5201–5205 (2017).
    [16] Cai J., Ruffieux P., Jaafar R., Bieri M., Braun T., Blankenburg S., Muoth M.,
    Seitsonen A. P., Saleh M., Feng X., Mullen K. and Fasel R., Atomically precise
    bottom-up fabrication of graphene nanoribbons, Nature 466 470 (2010).
    [17] Wang S. Y., Talirz L., Pignedoli C. A., Feng X. L., Mullen K., Fasel R. and
    Ruffieux P., Giant edge state splitting at atomically precise graphene zigzag edges,
    Nat. Commun. 7 11507 (2015).
    [18] Rizzo D. J., Veber G., Cao T., Bronner C., Chen T., Zhao F., Rodriguez H., Louie
    S. G., Crommie M. F. and Fischer F. R., Topological band engineering of graphene
    nanoribbons, Nature 560 204 (2018).
    [19] Rizzo D. J., Veber G., Jiang J. W., McCurdy R., Cao T., Bronner C., Chen T.,
    Louie S. G., Fischer F. R. and Crommie M. F., Inducing metallicity in graphene
    nanoribbons via zero mode superlattices, Science 369 1597 (2020).
    [20] Sun Q., Yan Y., Yao X. L., Mullen K., Narita A., Fasel R. and Ruffieux P.,
    Evolution of the topological energy band in graphene Nanoribbons, J. Phys. Chem.
    Lett. 12 8679 (2021).
    [21] Tan S. H., Tang L. M. and Chen K. Q., Phonon scattering and thermal
    conductance properties in two coupled graphene nanoribbons modulated with bridge
    atoms, Phys. Lett. A 378 1952 (2014).
    [22] Haug H. and Jauho A. P., Quantum kinetics in transport and optics of
    semiconductors. Springer, Heidelberg. (1996).
    [23] Golor M., Koop C., Lang T. C., Wessel S. and M. J. Schmidt, Magnetic
    correlations in short and narrow graphene armchair nanoribbons. Phys. Rev. Lett. 111,
    085504 (2013).
    41
    [24] Kuo D. M. T., Effects of metallic electrodes on the thermoelectric properties of
    zigzag graphene nanoribbons with periodic vacancies, J. Phys: Condens. Matter 35
    305301 (2023).
    [25] Kuo D. M. T., Thermoelectric and electron heat rectification properties of
    quantum dot superlattice nanowire arrays. AIP Advances 4, 045222 (2020).
    [26] David M. T. K., Shiau S. Y., and Chang Y. C., Theory of spin blockade, charge
    ratchet effect, and thermoelectrical behavior in serially coupled quantum dot system.
    Phys. Rev. B 84, 245303.(2011).
    [27] Jiang J. W. and Louie S. G., Topology Classification using Chiral Symmetry and
    Spin Correlations in Graphene Nanoribbons, Nano Lett. 21, 197 (2021).
    [28] Zhao F. Z., Cao T. and Louie S. G., Topological Phases in Graphene Nanoribbons
    Tuned by Electric Fields, Phys. Rev. Lett. 127, 166401 (2021).

    QR CODE
    :::