| 研究生: |
王稚元 Chih-Yuan Wang |
|---|---|
| 論文名稱: |
加濕效應對加壓型甲烷固態氧化物燃料電池碳沉積影響 Effect of Humidification on Carbon Deposition of A Pressurized Solid Oxide Fuel Cell |
| 指導教授: |
施聖洋
Shenqyang Shih |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 加壓型甲烷固態氧化物燃料電池 、甲烷蒸氣重組 、水煤氣轉換 、穩定性測試 、碳沉積 |
| 外文關鍵詞: | Pressurized Methane-fueled Solid Oxide Fuel Cell, Methane Steam Reforming, Water-gas Shift Reaction, Stability Test, Carbon Deposition |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文量測加濕效應與壓力效應對甲烷固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC)電化學性能、碳沉積與電池穩定性之影響。採用實驗室已建立之加壓型SOFC測試平台,使用鈕扣型陽極支撐電池(Ni-YSZ/ YSZ/ LSC-GDC),於操作壓力p = 1 atm 與3 atm和操作溫度750°C,進行四種不同濕度比例之甲烷作為陽極燃料,以steam to carbon ratio (S/C)定義,分別為(1) S/C = 0 (50 sccm CH4 + 150 sccm N2)、(2) S/C = 0.25 (50 sccm CH4 + 12.5 sccm H2O + 137.5 sccm N2) 、 (3) S/C = 0.5 (50 sccm CH4 + 25 sccm H2O + 125 sccm N2) 以及(4) S/C = 1 (50 sccm CH4 + 50 sccm H2O + 100 sccm N2),陽極總體積流率為200 sccm;陰極則是通入200 sccm的空氣。實驗結果顯示:在p = 1 atm下,甲烷加濕效應可使SOFC功率密度提升14% ~ 26%,最大提升值發生在S/C = 0.25,這是因為甲烷蒸氣重組反應將CH4轉換成H2,得以有效地降低活化極化與濃度極化。再者,壓力效應與加濕效應結合明顯降低SOFC極化阻抗,例如加濕甲烷在p = 3 atm和S/C = 0.5條件下,其電池性能比起常壓和S/C = 0.5條件下之性能高出62%。在p = 3 atm和S/C = 0條件下,於 SEM與XRD影像觀測到有大量的碳沉積聚集於燃料進口處,這是因壓力效應加劇了甲烷與陽極鎳觸媒直接裂解的速率,提高S/C可藉由甲烷蒸氣重組,與水煤氣轉換反應抑制於燃料進口處之碳沉積,達到延長電池壽命的目的。綜合以上結果,顯示加壓型甲烷SOFC配合適度加濕,未來可與直接燃燒甲烷(天然氣主要成份)之微氣渦輪機結合,發展分散式高效率複合式發電系統。
This study meassures the effect of humidification on carbon deposition for a pressurized methane-fueled solid oxide fuel cell (SOFC) using anode-supported button full cell (ASC: NiO-YSZ/ YSZ/ LSC-GDC). Experiments are conducted in high-pressure SOFC testing platform. The experimental conditions are two operating pressures p = 1 atm and p = 3 atm at T = 750 °C. The anode fuel is supplied by methane with four different steam to carbon ratio (S/C): (1) S/C = 0 (50 CH4 + 150 N2), (2) S/C = 0.25 (50 CH4 + 12.5 H2O + 137.5 N2), (3) S/C =0.5 (50 CH4 + 25 H2O + 125 N2), (4) S/C =1 (50 CH4 + 50 H2O + 100 N2) at a total flow rate of 200 ml min-1, and the cathode is supplied by air at a total flow rate of 200 ml min-1 for all four cases . Results show that steam-methane reforming can improve power density and reduce both activation and concentration polarization noticeably. Moreover, the maximum power density is formed to be at S/C = 0.5 with p = 3 atm, which significantly increase of 62% as compared with that at p = 1 atm and S/C = 0.5. The scanning electron microscope (SEM) and X-ray diffraction (XRD) images show great amount of carbon deposition at S/C = 0 with p = 3 atm. The carbon deposition can be suppressed by increasing S/C under steam-methane reforming and water-gas shift reaction, which is turn extends the cell durability. This suggests that the pressurized methane-fueled SOFC is feasible for the future development of the hybrid power system integrating with micro gas turbines.
參考文獻
[1] U.S. Energy Information Administration, Annual Energy Outlook 2021 Narrative, (2021) 9-10. (https://www.eia.gov/outlooks/aeo/)
[2] S.C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, 1st Ed. , Elsevier, United Kingdom, 2003.
[3] Q.L. Ma, J.J. Ma, S. Zhou, R.Q. Yan, J.F. Gao, G.Y. Meng, A High-Performance Ammonia-Fueled SOFC Based on a YSZ Thin-Film Electrolyte, J. Power Sources 164 (2007) 86-89. (10.1016/j.jpowsour.2006.09.093)
[4] Y. Jiao, L. Zhang, W. An, W. Zhou, Y. Sha, Z. Shao, J. Bai, S.D. Li, Controlled Deposition and Utilization of Carbon on Ni-YSZ Anodes of SOFCs Operating on Dry Methane, Energy 113 (2016) 432-443.
(10.1016/j.energy.2016.07.063)
[5] K. Miyazaki, T. Okanishi, H. Muroyama, T. Matsui, K. Equchi, Development of Ni-Ba(Zr,Y)O3 Cermet Anodes for Direct Ammonia-Fueled Solid Oxide Fuel Cells, J. Power Sources 365 (2017) 148-154. (https://doi.org/10.1016/j.jpowsour.2017.08.085)
[6] A. Ideris, E. Croiset, M. Pritzker, Ni-Samaria-Doped Ceria (Ni-SDC) Anode-Supported Solid Oxide Fuel Cell (SOFC) Operating with CO, Int. J. Hydrogen Energy 42 (2017) 9180-9187.
(https://doi.org/10.1016/j.ijhydene.2016.05.203)
[7] T.M. Gür, Comprehensive Review of Methane Conversion in Solid Oxide Fuel Cells: Prospects for Efficient Electricity Generation from Natural Gas, Prog. Energy Combust. Sci. 54 (2016) 1-64. (https://doi.org/10.1016/j.pecs.2015.10.004)
[8] J. Xiao, Y. Xie, J. Liu, M. Liu, Deactivation of Nickel-Based Anode in Solid Oxide Fuel Cells Operated on Carbon-Containing Fuels, J. Power Sources 268 (2014) 508-516.
(https://doi.org/10.1016/j.jpowsour.2014.06.082)
75
[9] Y. Lin, Z. Zhan, J. Liu, S.A. Barnett, Direct Operation of Solid Oxide Fuel Cells with Methane Fuel, Solid State Ion. 176 (2005) 1827-1835. (https://doi.org/10.1016/j.ssi.2005.05.008)
[10] A. Gunji, C. Wen, J. Otomo, T. Kobayashi, K. Ukai, Y. Mizutani, H. Takahashi, Carbon Deposition Behaviour on Ni–ScSZ Anodes for Internal Reforming Solid Oxide Fuel Cells, J. Power Sources, 131 (2004) 285-288.
(10.1016/j.jpowsour.2003.11.086)
[11] H. Sumi, K. Ukai, Y. Mizutani, H. Mori, C.J. Wen, H. Takahashi, O. Yamamoto, Performance of Nickel–Scandia-Stabilized Zirconia Cermet Anodes for SOFCs in 3% H2O–CH4, Solid State Ion. 174 (2004) 151-156.
(https://doi.org/10.1016/j.ssi.2004.06.016)
[12] W. Wang, C. Su, Y. Wu, R. Ran, Z. Shao, Progress in Solid Oxide Fuel Cells with Nickel-Based Anodes Operating on Methane and Related Fuels, Chem. Rev. 113 (2013) 8104-8151. (https://doi.org/10.1021/cr300491e)
[13] S.C. Singhal, Advances in Solid Oxide Fuel Cell Technology, Solid State Ion. 135 (2000) 305-313. (10.1016/S0167-2738(00)00452-5)
[14] P.C. Wu, S.S. Shy, Cell Performance, Impedance, and Various Resistances Measurements of an Anode-Supported Button Cell Using a New Pressurized Solid Oxide Fuel Cell Rig at 1-5 atm and 750-850 oC, J. Power Sources 362 (2017) 105-114.
(https://doi.org/10.1016/j.jpowsour.2017.07.030)
[15] S.S. Shy, S.C. Hsieh, H.Y. Chang, A Pressurized Ammonia-Fueled Anode-Supported Solid Oxide Fuel Cell: Power Performance and Electrochemical Impedance Measurements, J. Power Sources 396 (2018) 80-87. (https://doi.org/10.1016/j.jpowsour.2018.06.006)
[16] Y.T. Hung, S.S. Shy, A Pressurized Ammonia-Fed Planar Anode-Supported Solid Oxide Fuel Cell at 1-5 atm and 750-850 oC and its Loaded Short Stability Test, Int. J. Hydrogen Energy 45 (2020) 27597-27610. (https://doi.org/10.1016/j.ijhydene.2020.07.064)
[17] K.P. Recknagle, E.M. Ryan, B.J. Koeppel, L.A. Mahoney, M.A. Khaleel, Modeling of Electrochemistry and Steam–Methane Reforming
76
Performance for Simulating Pressurized Solid Oxide Fuel Cell Stacks, J. Power Sources 195 (2010) 6637-6644.
(https://doi.org/10.1016/j.jpowsour.2010.04.024)
[18] M. Henke, J. Kallo, K.A. Friedrich, W.G. Bessler, Influence of Pressurisation on SOFC Performance and Durability: A Tho-retical Study, Fuel Cells 11 (2011) 581-591. (https://doi.org/10.1002/fuce.201000098)
[19] 吳佩真,加壓鈕扣型陽極支撐SOFC實驗量測與活化和濃度過電位分析計算,碩士論文,國立中央大學,桃園,台灣,2013。
[20] 李雪茹,加壓型SOFC陰極半電池實驗研究,碩士論文,國立中央大學,桃園,台灣,2013。
[21] 詹彥信,固態氧化物燃料電池使用甲烷燃氣之性能和電化學阻抗實驗研究,碩士論文,國立中央大學,桃園,台灣,2014。
[22] 梁俊德,加壓型SOFC碳沉積之實驗研究,碩士論文,國立中央大學,桃園,台灣,2015。
[23] 洪立翰,合成氣於加壓型SOFC之性能量測及其微氣渦輪機複合系統之模擬分析,碩士論文,國立中央大學,桃園,台灣,2015。
[24] 洪建宇,合成氣SOFC實驗:電解質支撐與陽極支撐全電池之比較,碩士論文,國立中央大學,桃園,台灣,2016。
[25] 張華屹,合成氣固態氧化物燃料電池性能與穩定性量測,碩士論文,國立中央大學,桃園,台灣,2018。
[26] V.A.C. Haanappel, M. J. Smith, A Review of Standardising SOFC Measurement and Quality Assurance at FZJ, J. Power Sources 171 (2007) 169-178. (https://doi.org/10.1016/j.jpowsour.2006.12.029)
[27] A.K. Mishra, Sol-gel Based Nanoceramic Materials: Prepration, Properties and Applications, 1st Ed., Springer, South Africa, 2017.
(https://link.springer.com/book/10.1007/978-3-319-49512-5)
[28] R.O. Hayre, S.W. Cha, W. Colella, F.B. Prinz, Fuel Cell Fundamentals, 2nd Ed., John Wiley & Sons, Inc., New York, 2009.
77
(https://www.amazon.com/Fuel-Cell-Fundamentals-Ryan-OHayre/dp/04702-58438)
[29] N.P. Brandon, E. Ruiz-Trejo, P. Boldrin, Solid Oxide Fuel Cell Lifetime and Reliability: Critical Challenges in Fuel Cells, First ed., Elsevier, London, United Kingdom, 2017.
[30] Z. Lyu, H. Li, M. Han, Electrochemical Properties and Thermal Neutral State of Solid Oxide Fuel Cells with Direct Internal Reforming of Methane, Int. J. Hydrogen Energy 44 (2019) 12151-12162. (https://doi.org/10.1016/j.ijhydene.2019.03.048)
[31] L. Chen, J. Ni, J. Zhao, J. lin, S. Kawi, Lewis Acid Sites Stabilized Nickel Catalysts for Dry (CO2) Reforming of Methane, ChemCatChem 8 (2016) 3732-3739. (https://doi.org/10.1002/cctc.201601002)
[32] D. Shang, S. Zeng, X. Zhang, L. Bai, Highly Efficient and Reversible Absorption of NH3 by Dual Functionalised Ionic Liquids with Protic and Lewis Acidic Sites, J. Mol. Liq. 312 (2020), 113411.
(https://doi.org/10.1016/j.molliq.2020.113411) [33] P.C. Stair, The Concept of Lewis Acids and Bases Applied to Surfaces, J. Am. Chem. Soc. 104 (1982) 4044-4052. (https://doi.org/10.1021/ja00379a002)
[34] W. Liu, J. Sang, Y. Wang, X. Chang, L. Lu, J. Wang, X. Zhou, Q. Zhai, W. Guan, S. C. Singhal, Durability of Direct-Internally Reformed Simulated Coke Oven Gas in an Anode-Supported Planar Solid Oxide Fuel Cell Based on Double-Sided Cathodes, J. Power Sources 465 (2020) 228284-22829. ( https://doi.org /10.1016/j.jpowsour.2020.228284)
[35] V. Suboti’c, C. Schluckner, H. Schroettner, C. Hochenauer, Analysis of Possibilities for Carbon Removal from Porous Anode of Solid Oxide Fuel Cells after Different Failure Modes, J. Power Sources 302 (2016) 378-386. (https://doi.org /10.1016/j.jpowsour.2015.10.071 )
[36] M. Henke, C. Willich, C. Westner, F. Leucht, R. Leibinger, J. Kallo, K.A. Friedrich, Effect of Pressure Variation on Power Density and Efficiency of Solid Oxide Fuel Cells, Electrochim. Acta, 66 (2012) 158-163. (https://doi.org /10.1016/j.electacta.2012.01.075)
[37] Y.D. Hsieh, Y.H. Chan, S.S. Shy, Effects of Pressurization and Temperature on Power Generating Characteristics and Impedances of
78
Anode-Supported and Electrolyte-supported Planar Solid Oxide Fuel Cells, J. Power Sources, 299 (2015) 1-10. (https://doi.org /10.1016/j.jpowsour.2015.08.080)
[38] B.S. Prakash, S.S. Kumar, S.T. Aruna, Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review, Renew. Sustain. Energy Rev. 36 (2014) 149-179.
(https://doi.org/10.1016/j.rser.2014.04.043)
[39] S. Bebelis, A. Zeritis, C. Tiropani, S.G. Neophytides, Intrinsic Kinetics of Internal Steam Reforming of CH4 Over a Ni YSZ Cermet Catalyst-electrode, Ind. Eng. Chem. Res. 39 (2000) 4920-4927. (https://doi.org/10.1021/ie000350u).
[40] A.L. Dicks, K.D. Pointon, A. Siddle, Intrinsic Reaction Kinetics of Methane Steam Reforming on a Nickel/Zirconia Anode, J. Power Sources 86 (2000) 523-530. ( https://doi.org/10.1016/S0378-7753(99)00447-4)
[41] K. Ahmed, K. Foger, Kinetics of Internal Steam Reforming of Methane on Ni/YSZ Based Anodes for Solid Oxide Fuel Cells, Catal. Today 63 (2000) 479-487.
(https://doi.org/10.1016/S0920-5861(00)00494-6)
[42] C.H. Bartholomew, Carbon Deposition in Steam Reforming and Methanation, Catal. Rev. 24 (2007) 67-112.
(https://doi.org/10.1080/03602458208079650)
[43] P.G. Menon, Coke on Catalysts Harmful, Harmless, Invisible and Beneficial Types. J. Mol. Catal. 59 (1990) 207-220.
(https://doi.org/10.1016/0304-5102(90)85053-K)
[44] H. Hongpeng, M.H. Josephine, Carbon Deposition on Ni/YSZ Composites Exposed to Humidified Methane, Appl. Catal. A: Gen. 317 (2007) 284-292. (https://doi.org/10.1016/j.apcata.2006.10.040)
[45] A. Leonide, Y. Apel, E.I. Tiffee, SOFC Modeling and Parameter Identification by Means of Impendance Specrroscopy, ECS Trans. 19 (2009) 81-109. (https://doi.org/10.1149/1.3247567)
79
[46] M. Ni, M.K.H. Leung, D.Y.C. Leung, Parametric Study of Solid Oxide Fuel Cell Performance, Energy Convers. Manag. 48 (2007) 1525-1535. (https://doi.org/10.1016/j.enconman.2006.11.016)
[47] S.H. Chan, K.A. Khor, Z.T. Xia, A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness, J. Power Sources, 93 (2001) 130-140 2001. (https://doi.org/10.1016/S0378-7753(00)00556-5)
[48] S.H. Chan, Z.T. Xia, Polarization Effects in Electrolyte/electrode-Supported Solid Oxide Fuel Cells, J. Appl. Electrochem. , 32 (2002) 339-347.
[49] K. Kendall, C.M. Finnerty, G. Saunders, J.T. Chung, Effects of Dilution on Methane Entering an SOFC Anode, J. Power Sources 106 (2002) 323-327. (https://doi.org/10.1016/s0378-7753(01)01066-7)
[50] T. Takeguchi, Y. Kani, T. Yano, R. Kikuchi, K. Eguchi, K. Tsujimoto, Study on Steam Reforming of CH4 and C2 Hydrocarbons and Carbon Deposition on Ni–YSZ Cermets, J Power Sources 112 (2002) 588-595. (https://doi.org/10.1016/s0378-7753(02)00471-8)
[51] W.G. Bessler, Gas Concentration Impedance of Solid Oxide Fuel Cell Anodes I. Stagnation Point Flow Geometry, J. Electrochem. Soc. 153 (2006) 1492-1504.( https://doi.org/10.1149/1.2205150)
[52] W.G. Bessler, S. Gewies, Gas Concentration Impedance of Solid Oxide Fuel Cell Anodes II. Channel Geometry, J. Electrochem. Soc. 154 (2006) 548-559.( https://doi.org/10.1149/1.2720639)
[53] S. Primdahl, M. Mogensen, Primdahl, S., Mogensen, M., Gas Conversion Impedance: A Test Geometry Effect in Characterization of Solid Oxide Fuel Cell Anodes, J. Electrochem. Soc. 145 (1998) 2431-2438. (https://doi.org/10.1149/1.1838654)
[54] S. Primdahl, M. Mogensen, Gas Diffusion Impedance in Characterization of Solid Oxide Fuel Cell Anodes, J. Electrochem. Soc. 146 (1999) 2827-2833. ( https://doi.org/10.1149/1.1392015)
[55] C. Su, R. Ran, W. Wang, Z. Shao, Coke Formation and Performance of an Intermediate-temperature Solid Oxide Fuel Cell Operating on Dimethyl Ether Fuel, J. Power Sources 196 (2011) 2827-2833.