| 研究生: |
黃冠二 Guan-Er Huang |
|---|---|
| 論文名稱: |
超薄型數位攝影鏡頭在鏡頭長度2 mm以內之設計與成像面彎曲探討 |
| 指導教授: |
孫文信
Wen-Shing Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 超薄型攝影鏡頭 、鏡頭長度分析 、像面彎曲 |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用8個數位攝影鏡頭之設計進行鏡頭長度的分析與像面彎曲探討,分別為30萬畫素的兩個設計、100萬畫素的一個設計、200萬畫素的四個設計與200萬畫素像面彎曲的一個設計。
在30萬畫素的兩個設計中,將半視角從20度增加到30度,使得有效焦距變短,鏡頭長度從12.964 mm縮短為8.439 mm,再選擇較小的單一畫素大小,將成像高度變小,進行100萬與200萬畫素的第一個設計,其鏡頭長度分別為5 mm與2.65 mm,在200萬畫素的第二個設計中,以達到相對照度的要求下,將半視角增加至32度,使得鏡頭長度縮短為2.447 mm,在200萬畫素的第三與第四個設計中,縮短後焦距並探討鏡片之折光率、主平面間距、厚度、折射率與第二主平面的關係,其鏡頭長度分別為2.14 mm與2 mm。
當鏡頭長度越薄,像方主光線角度會越大,造成相對照度下降,場曲也同時變大,導致成像品質下降,所以鏡頭長度的縮短是有一個限制的,在200萬畫素像面彎曲的設計中,其像面的曲率半徑為-6.318 mm,修正了像方主光線角度過大的問題,並且補償場曲造成的像差,使得成像品質提高。
This paper uses eight digital photographic lens designs to analyze the overall length of the lens and the curved imaging surface, which are two designs of VGA, one design of 1 million pixels, four designs of 2 million pixels, and one design imaging on a curved surface of 2 million pixels.
In the two designs of VGA, increasing the half field angle from 20 degrees to 30 degrees make the effective focal length shorter, so the overall length is from 12.964 mm to 8.439 mm. Then select the smaller pixel size and reduce the imaging height to do the 1 million and the first design of 2 million pixels. The overall length of the lens is 5 mm and 2.65 mm, respectively. In the second design of 2 million pixels, the half field angle was increased to 32 degrees under the requirement of relative illumination, which shortened the overall length of the lens to 2.447 mm. In the third and fourth designs of 2 million pixels, shorten the back focal length and discuss the relationship between the power, the principal plane spacing, the thickness, the refractive index and the second principal plane of the lens. The overall length of the lens is 2.14 mm and 2 mm, respectively.
When the overall length of the lens is thinner, the chief ray angle will be larger, so the relative illumination decreases. When the field curvature also increases, the image quality decreases. Therefore, there is a limit to shortening the overall length. In the design imaging on a curved surface of 2 million pixels, the radius of curvature of the image surface is -6.318 mm, which corrects the problem of the chief ray angle too large, and compensates for the aberration caused by the field curvature, so that the image quality is improved.
[1] X. Chen, D. S. Gere, M. C. Waldon, U. S. Patent No 9,244,253 (26 January, 2016).
[2] 鄭上仁,「全天候監視器鏡頭設計」,中央大學光電科學研究所,碩士論文,民國102年6月。
[3] 洪珷,「針孔鏡頭設計與雜散光分析」,中央大學光電科學與工程學系照明與顯示科技研究所,碩士論文,民國103年6月。
[4] 徐嘉謙,「內視鏡鏡頭設計和雜散光分析與改善」,中央大學光電科學研究所,碩士論文,民國99年6月。
[5] 潘群立,「三百萬畫素攝影機鏡頭設計」,中央大學光電科學研究所,碩士論文,民國101年6月。
[6] P. Gregory, "Digital photography," Optics & Laser Technology, 38, 306-314 (2006).
[7] A. El Gamal and H. Eltoukhy, "CMOS image sensors," IEEE Circuits and Devices Magazine 21, 6-20 (2005).
[8] E. Hecht, Optics (Addison Wesley, 2002), p. 226.
[9] F. de la Barriere, G. Druart, N. Guerineau, and J. Taboury, “Design strategies to simplify and miniaturize imaging systems,” Appl. Opt. 50, 943–951 (2011).
[10] P. Milojkovic and J. N. Mait, “Space-bandwidth scaling for wide field-of-view imaging,” Appl. Opt. 51(4), A36–A47 (2012).
[11] O. Iwert and B. Delabre, “The challenge of highly curved monolithic imaging detectors,” Proc. SPIE 7742, 774227 (2010).
[12] D. Reshidko and J. Sasian, “Optical analysis of miniature lenses with curved imaging surfaces,” Appl. Opt. 54(28), E216–E223 (2015).
[13] I. Stamenov, I. P. Agurok, and J. E. Ford, “Optimization of two-glass monocentric lenses for compact panoramic imagers: general aberration analysis and specific designs,” Appl. Opt. 51(31), 7648–7661 (2012).
[14] P. K. Swain, D. J. Channin, G. C. Taylor, S. A. Lipp and D. S. Mark, "Curved CCDs and their application with astronomical telescopes and stereo panoramic cameras," Proc. SPIE 5301, 109-129 (2004).
[15] T. J. Jones and S. Nikzad, "Curved focal plane arrays using conformed thinned detector membrane," Nanotech Brief 28, No. 3 (2004).
[16] M. R. Ackermann, J. T. McGraw and P. C. Zimmer, "Are curved focal planes necessary for wide-field survey telescopes?" Proc. SPIE 6267, 626740-626749 (2006).
[17] S. B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, “The optical advantages of curved focal plane arrays,” Opt. Express 16(7), 4965–4971 (2008).
[18] D. Dumas, M. Fendler, N Baier, J. Primot, and E. Le Coarer, "Curved focal plane detector array for wide field cameras," Applied Optics 51, no. 22, pp. 5419-5424 (2012).
[19] K. Itonaga, et al "A Novel Curved CMOS Image Sensor Integrated with Imaging System," Sony R&D Platform, Atsugi, Japan. Symposium on VLSI Technology (2014).
[20] C. Gaschet, et al., “Curved sensors for compact high-resolution wide field designs,” SPIE, vol. 10376, Aug. 2017.
[21] B. Guenter, et al., "Highly Curved Image Sensors: A Practical Approach for Improved Optical Performance," Optics Express 25, no. 12 (2017).
[22] B. K. Guenter, N. Emerton, U. S. Patent No 20140376113 (25 December, 2014).
[23] ON Semiconductor , “LUPA300,” in image sensor, https://www.onsemi.com
[24] Joseph W. Goodman, “Introduction to Fourier Optics,” McGraw-Hill, New York (1996).
[25] 牟益弘,「三百萬畫素二點七五倍光學變焦手機鏡頭設計」,國立中央大學光電科學研究所,碩士論文(2008).
[26] D. Malacara, Optical Shop Testing (A Wiley-Interscience, 1991), 2nd edit.
[27] OmniVision, “OV9282,” in image sensor, https://www.ovt.com.
[28] Toshiba, “T4K71,” in image sensor, https://toshiba.semicon-storage.com/tw/top.html.
[29] Airy disk, http://goo.gl/6XCPV9.
[30] Code V Tolerancing Reference Manual, Synopsys Inc., Version 11.1, Ch. 1, 2018.
[31] Janostech, “Understanding Optical Specifications,”
www.janostech.com/knowledge-center/optical-reference-guide/understanding-optical-specifications.html.
[32] W. S. Sun, P. Y. Chu, C. L. Tien, and M. F. Chung, “Zoom lens design for 10.2-megapixel APS-C digital SLR cameras,” Appl. Opt. 56(3), 446–456 (2017).