跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱鈺宸
Yu-Chen Chiou
論文名稱: 應用聲學及光學儀器在均勻及現場懸浮質濃度之量測率定及比較
Calibration and comparison of suspended sediment concentration measurement for uniform and non-uniform particles using acoustic and optical sensors
指導教授: 黃志誠
Zhi-Cheng Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 水文與海洋科學研究所
Graduate Instittue of Hydrological and Oceanic Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 61
中文關鍵詞: 懸浮微粒濃度光學濁度儀(OBS)都卜勒聲學流速儀(ADVO)儀器率定均質微粒非均質微粒
外文關鍵詞: suspended sediment concentration, Optical Backscatter Sensor, Acoustic Doppler Velocimeter, sensor calibration, uniform particles, non-uniform particles
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討運用都卜勒聲學流速儀(ADVO)及光學濁度儀(OBS)來測量不同特性懸浮沉積物的差異性,並與前人研究結果進行比較討論。當已知訊號傳遞至不同濃度的懸浮微粒時,因濃度的改變而產生不同強度的反射訊號,故擬應用此原理來探討懸浮沉積物濃度與反射訊號強度的關係。為了能在濃度均勻且無氣泡影響的量測環境下進行濃度率定實驗,本研究排除影響儀器接收反射訊號干擾的因子,使儀器率定結果精準度增加。本研究建立一個新的率定水槽,並對此水槽進行空間均勻度、實驗再現性等多種驗證。經過改善後,測試結果顯示此新建立的水槽及實驗方法可以作為懸浮物濃度的率定用水槽及標準化。

    文中分別使用細顆粒均質玻璃珠及現場所採集到的底部表層底沙作為懸浮微粒來進行儀器濃度率定實驗。將光學濁度儀對玻璃珠及現場底沙率定曲線進行比較,結果顯示在特定濃度內,量測值會與均質懸浮微粒濃度呈現線性關係,超過此濃度後,率定曲線會呈現非線性情況。另外研究證實,於特定濃度範圍內,聲學都卜勒流速儀所接收的反射訊號強度會與水體內懸浮微粒濃度呈線性關係,顯示聲學都卜勒流速儀未來應可成為量測現場懸浮沉積物濃度變化的儀器。本研究將實驗結果與Ha et al.[2009]的結果進行比較,發現在均質及現場懸浮質的量測環境下,聲學都卜勒流速儀的率定曲線趨勢有相似的變化。


    The study aims to investigate the suspended sediment concentration (SSC) for uniform and non-uniform particles using Acoustic Doppler Velocimeter Ocean(ADVO)and Optical Backscatter Sensor(OBS). Because the backscatter intensity of the transmitted signals from the acoustic and optical sensors varies depending on the SSC in the water, it is possible to find an empirical correlation function between the measured backscatter intensity and the SSC. Because air bubbles and non-uniform distributed SSC in the water can affect the calibration results, we try to exclude these factors in advance to increase the calibration accuracy. We developed a new calibration tank and perform the verification of spatial uniformity, and experimental repeatability. The results show that the calibration tank and the experimental methods can be used to calibrate the SSC.

    In this study, artificial uniform glass particles and non-uniform sediment particles sampled from the field over an algal reef are used for calibration. The calibration curves of the optical sensor for the uniform glass particles and field sediment particles are compared; it is found that the backscatter intensity shows a linear trend with the SSC within a specific range of SSC, and then the gradient between the SSC and backscatter decreases when the SSC exceeds the specific value. In addition, the study confirms the linear relationship between the acoustic backscatter intensity and the SSC for a specific SSC which indicating that ADVO could be used to measure the change of SSC in fields. Finally, we compared the results with Ha at el. [2009], and found that the trends of the calibration curves of the ADVs are similar to their results even though different sediment particles are used in the two experiments.

    目錄 摘要 i Abstract ii 謝誌 iv 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1. 前言及研究動機 1 1.2. 文獻回顧 2 1.2.1. 流速儀訊號除噪之研究 2 1.2.2. 反射訊號強度和懸浮濃度之關係 3 1.3. 本文架構 6 第二章 實驗設置及規劃 7 2.1. 實驗儀器與設備 7 2.1.1. 都卜勒聲學流速儀 7 2.1.2. 可調式變壓器 9 2.1.3. 沉水泵浦 9 2.1.4. 光學濁度儀 9 2.2. 實驗設置 11 2.3. 實驗用懸浮微粒 11 2.3.1. 人造規則微粒 11 2.3.2. 現場採集之微粒 12 2.4. 實驗控制條件 12 2.4.1. 氣泡影響與排除 12 2.4.2. 實驗再現性 13 2.4.3. 空間均勻度 13 2.4.4. 取樣資料驗證 14 第三章 實驗方式及取樣分析 30 3.1. 實驗方法 30 3.2. 測定懸浮微粒濃度 31 3.3. 資料分析方法 32 第四章 結果與討論 36 4.1. 光學濁度儀率定結果及分析 36 4.1.1. 光學濁度儀率定結果 36 4.1.2. 均勻及非均勻粒子結果比較 37 4.2. 聲學流速儀率定結果及分析 38 4.2.1. 聲學流速儀率定結果 38 4.2.2. 均勻及非均勻粒子結果比較 39 4.2.3. 與前人研究比較結果 39 4.3. 量測資料統計分析 41 4.3.1. 標準差分析結果 41 4.3.2. 偏度分析結果 42 4.3.3. 峰度分析結果 43 第五章 結論及建議 58 5.1. 結論 58 5.2. 建議 59 參考文獻 60   圖目錄 圖1. 聲學流速儀儀器照片 18 圖2. 聲學流速儀的量測示意圖 18 圖3. 可調式變壓器之儀器照片 19 圖4. 沉水泵浦之儀器照片 19 圖5. 光學濁度儀(optical backscatter sensor, OBS) 20 圖6. 光學濁度儀操作量測示意圖 20 圖7. 底層循環馬達 21 圖8. 實驗配置俯視圖 21 圖9. 實驗配置側視示意圖 22 圖10. 玻璃珠於顯微鏡下圖(大鎪科技) 22 圖11. 桃園觀音藻礁的底沙採集地點示意圖 23 圖12. 新屋臨海工作站外海礫石灘的底沙採集地點示意圖 23 圖13. 底沙採集處理流程圖 24 圖14. 經孔徑200 篩網所過濾出之底沙 24 圖15. 再現性驗證流程圖 25 圖16. 玻璃珠懸浮質再現性實驗量測結果 26 圖17. 現場底沙懸浮質再現性量測結果 26 圖18. 空間均勻度驗證流程圖 27 圖19. 玻璃珠懸浮質均勻度測試結果 28 圖20. 現場底沙懸浮質均勻度測試結果 28 圖21. 長時間量測結果 29 圖22. 資料取樣分析結果 29 圖23. 儀器率定實驗流程圖 33 圖24. 懸浮質濃度分析實驗流程圖 34 圖25. 資料取樣示意圖 35 圖26. 光學濁度儀對玻璃珠懸浮質之率定結果 45 圖27. 光學濁度儀對現場底沙懸浮質之率定結果 45 圖28. 光學濁度儀對玻璃珠及現場底沙懸浮質的率定曲線比較 45 圖29. 不同聲學流速儀對玻璃珠懸浮質濃度變化之率定結果 46 圖30. 不同聲學流速儀對現場底沙懸浮質濃度變化之率定結果 47 圖31. 聲學流速儀對於(a.)玻璃珠(b.)現場底沙懸浮質濃度變化之率定結果比較 48 圖32. 聲學流速儀對(a.)現場底沙懸浮質之率定結果與(b.)Ha et al. (2009)文中VIMS之率定結果比較(使用現場底沙及高嶺土) 49 圖33. 聲學流速儀對(a.)玻璃珠懸浮質之率定結果與(b.)Ha et al. (2009)文中NCKU之率定結果比較(使用6180泥) 50 圖34. 聲學流速儀對(a.)玻璃珠(b.)現場底沙之率定曲線與Ha et al. (2009)率定結果比較 51 圖35. 光學濁度儀量測資料標準差與(a.)玻璃珠(b.)現場底沙懸浮質濃度散佈圖 52 圖36. 聲學流速儀量測資料標準差與(a.)玻璃珠(b.)現場底沙懸浮質濃度散佈圖 53 圖37. 光學濁度儀量測資料偏度與(a.)玻璃珠(b.)現場底沙懸浮質濃度散佈圖 54 圖38. 聲學流速儀量測資料偏度與(a.)玻璃珠(b.)現場底沙懸浮質濃度散佈圖 55 圖39. 光學濁度儀量測資料峰度與(a.)玻璃珠(b.)現場底沙懸浮質散佈圖 56 圖40. 聲學流速儀量測資料峰度與(a.)玻璃珠(b.)現場底沙懸浮質散佈圖 57   表目錄 表1. 聲學流速儀之基本量測特性 16 表2. 可調式變壓器之基本規格 16 表3. 沉水泵浦之基本規格 16 表4. 光學濁度儀之基本量測特性 17 表5. 玻璃珠之基本特性 17 表6. 實驗再現性平均值及標準差統計結果 18 表7. 光學濁度儀對玻璃珠懸浮質濃度變化的線性迴歸式 44 表8. 光學濁度儀對現場底沙懸浮質濃度變化的線性迴歸式 44 表9. 聲學流速儀對玻璃珠懸浮質濃度變化之線性迴歸式 44 表10. 聲學流速儀對現場底沙懸浮質濃度變化之線性迴歸式 44

    參考文獻
    1. Downing, J., 2006. Twenty-five years with obs sensors: The good, the bad, and the ugly. Cont. Shelf Res., 26(17-18): 2299-2318.
    2. Elgar, S., Raubenheimer, B. and Guza, R.T., 2005. Quality control of acoustic doppler velocimeter data in the surfzone. Meas. Sci. Technol., 16(10): 1889-1893.
    3. Feddersen, F., 2010. Quality controlling surf zone acoustic doppler velocimeter observations to estimate the turbulent dissipation rate. J. Atmos. Ocean. Technol., 27(12): 2039-2055.
    4. Ha, H.K., Hsu, W.Y., Maa, J.P.Y., Shao, Y.Y. and Holland, C.W., 2009. Using adv backscatter strength for measuring suspended cohesive sediment concentration. Cont. Shelf Res., 29(10): 1310-1316.
    5. Mori, N., Suzuki, T. and Kakuno, S., 2007. Noise of acoustic doppler velocimeter data in bubbly flows. J. Eng. Mech.-ASCE, 133(1): 122-125.
    6. Russo, C.R. and Boss, E.S., 2012. An evaluation of acoustic doppler velocimeters as sensors to obtain the concentration of suspended mass in water. Journal of Atmospheric and Oceanic Technology, 29(5): 755-761.
    7. SonTek, 1997. Sontek doppler current meters - using singal strength data to monitor suspended sediment concentration. 7.
    8. Thorne, P.D. and Hurther, D., 2014. An overview on the use of backscattered sound for measuring suspended particle size and concentration profiles in non-cohesive inorganic sediment transport studies. Cont. Shelf Res., 73: 97-118.
    9. Wang, Y.P. et al., 2013. Sediment resuspension, flocculation, and settling in a macrotidal estuary. J. Geophys. Res.-Oceans, 118(10): 5591-5608.
    10. 張世樺,「聲學濁度計的率定與應用」,國立成功大學水利及海洋工程研究所碩士論文,2011年
    11. 吳珍怡,「利用多頻聲學儀器來探討水中懸浮沉積物粒徑及濃度變化之特性:水槽實驗及現場實測」,國立中山大學海洋地質及化學研究所碩士論文,2012年
    12. 黃鈺軒,「凝聚性沙質在水體沉降過程之研究」,國立成功大學水利及海洋工程研究所碩士論文,2009年
    13. 董景嘉,「黏性泥沙在振盪流中沉降過程之研究」,國立成功大學水文科學研究所碩士論文,2013年
    14. 張勝騰,「淡水河河口水質與懸浮細泥之調查研究」,國立中央大學水利及海洋工程研究所碩士論文,2003年
    15. 逢甲大學,「集集堰泥沙觀測分析研究及觀測站建置」,經濟部水利署中區水資源局,2006年
    16. 經濟部水利署水利規劃試驗所,「水庫泥沙濃度及流速超音波量測設備測試研發(1/2)」,經濟部水利署,2006年
    17. 國立交通大學,「河川泥沙觀測技術改善及示範站建置計劃(2/2)」,經濟部水利署,2007年
    18. 林柏青,「臺灣港灣近岸海域漂沙調查研究(1/4)」,交通部運輸研究所,2010年
    19. 林柏青,「臺灣港灣近岸海域漂沙調查研究(2/4)」,交通部運輸研究所,2011年
    20. 林柏青,「臺灣港灣近岸海域漂沙調查研究(4/4)」,交通部運輸研究所,2013年

    QR CODE
    :::