跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡忠明
Chung-Ming Tsai
論文名稱: 參數解關聯應用於GPS雙主站相位模稜求解
The Decorrelating Ambiguity Resolution for GPS Positioning with Dual Reference Stations
指導教授: 吳究
Joz Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 90
語文別: 中文
論文頁數: 64
中文關鍵詞: 衛星定位解關聯
外文關鍵詞: GPS Positioning, Decorrelation
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用相位資料進行定位時,相位模稜值具有舉足輕重的地位,原則上有求定與消去相位模稜值兩種主要的方式,在此本研究以參數解關聯的方式,期望解決相位模稜值與幾何位置高相關的問題,進而求定整數相位模稜值,來進行GPS雙主站定位。
    在雙主站的定位模式中,有一多餘資訊,也就是相位模稜約制,在加入了相位模稜約制的情況之下,使得參數之理論精度提高,並能在經過參數解關聯後搜尋出正確的整數解,最後進行單時刻的幾何定位求解。
    單時刻求解時,在加入了電離層影響參數或是方差協方差分量估計等不同的模式中,各有不同的表現,在此同時將多種模式做一比較分析。由最後的成果展現可以看出雙主站定位確有其優點。


    Phase Ambiguity plays an important role in GPS positioning using phase Data. There are two major ways to deal with the ambiguity resolution, vie to solve for and to eliminate. In order to solve for high correlation between ambiguities and geometry parameters, the decorrelation method is used, and then to fix the integer ambiguities. Dual reference GPS positioning is then going on after the ambiguities fixed.
    In the dual reference GPS positioning, there is redundant information, i.e. ambiguity constraint. By adding ambiguity constraint into the dual reference GPS positioning model, the theoretical parameter accuracy can be improved. After parameter decorrelating ,the correct integer ambiguities can be solved and single epoch positioning can then be carried on.
    While doing single epoch positioning, there are different appearances in the models by adding ionosphere effecting parameter or introducing variance and covariance component estimation. Base on the analysis between the models, the results coming form the dual reference positioning shows its superior to the single reference positioning.

    中文摘要 ……………………………………………………….. I 英文摘要 ……………………………………………………….. II 目錄 ……………………………………………………….. III 表目錄 ……………………………………………………….. IV 圖目錄 ……………………………………………………….. V 第一章 緒論………………………………………………….. 1 1.1 文獻回顧…………………………………………….. 1 1.2 研究動機…………………………………………….. 3 1.3 論文架構…………………………………………….. 3 第二章 GPS衛星測量理論基礎…………………………….. 5 2.1 GPS衛星之觀測量………………………………….. 5 2.2 觀測方程式………………………………………….. 6 2.3 差分模式…………………………………………….. 8 2.4 觀測資料之統計處理……………………………….. 9 2.4.1 原始觀測量加權…………………………………….. 9 2.4.2 卡方檢定…………………………………………….. 10 2.4.3 費雪檢定…………………………………………….. 12 第三章 參數解關聯—白化濾波…………………………….. 13 3.1 Crout因子分解……………………………………… 13 3.2 白化濾波理論……………………………………….. 15 3.3 相位模稜搜尋……………………………………….. 17 3.4 白化濾波處理流程及部分成果展現……………….. 19 第四章 雙主站定位模式…………………………………….. 22 4.1 平差模式…………………………………………….. 23 4.1.1 最小二乘混合平差模式…………………………….. 23 4.1.2 帶有約制的最小二乘混合平差模式……………….. 24 4.2 雙主站之相位模稜約制…………………………….. 25 4.3 方差協方差分量估計……………………………….. 27 4.3.1 方差協方差分量估計的方法……………………….. 28 4.3.2 分組依據與初始值之給定………………………….. 30 4.3.3 方差協方差分量求解步驟………………………….. 33 4.4 雙主站定位流程…………………………………….. 34 第五章 實驗分析與成果…………………………………….. 35 5.1 資料處理設備…………………………………….…. 35 5.2 靜態資料處理…………………………………….…. 35 5.2.1 實驗例之基線及相關資料………………….………. 36 5.2.2 單雙主站定位成果及其比較分析…...……………...39 5.2.3 雙主站定位考慮電離層影響成果及分析………….. 45 5.2.4 方差協方差分量估計應用於雙主站定位成果…….. 54 第六章 結論與建議…………………………………….……. 59 6.1 結論…………………………………………….……. 59 6.2 建議………………………………………….………. 60 參考文獻 ………………………………………………….……. 61

    內政部,「應用全球定位系統實施台閩地區基本控制點測量計畫總報告」,台北(1998)。
    方保鎔,「矩陣論基礎」,河海大學出版社,南京(1993)。
    吳究、李邱德,「GPS衛星測量載波相位模稜固定法之研究」,中國土木水利工程學刊,第七卷,第四期,第523-531頁(1995)。
    林修國,「模稜求定與時鐘偏差估計應用與衛星相對定位及姿態求解」,博士論文,國立中央大學大氣物理研究所,中壢(1997)。
    徐浩雄,「白化濾波應用於GPS動態衛星測量之研究」,碩士論文,國立中央大學土木工程研究所,中壢(2000)。
    黃昭銘,「消去GPS相位模稜OTF相對定位之研究」,碩士論文,國立中央大學土木工程研究所,中壢(2001)。
    游豐吉,「應用GPS載波相位餘弦模式於衛星測量之研究」,博士論文,國立中央大學土木工程研究所,中壢(1999)。
    Bierman, G. J., Factorization Methods for discrete Sequential Estimations, Acdemic Press, Inc., New York (1977).
    Chen, D. and G. Lachapelle, “A Comparison of the FASF and Least-Squares Search Algorithms for on-the-Fly Ambiguity Resolution,” Navigation, Vol. 42, No. 2, pp. 371-390 (1995).
    Fotopoulos, G. and M. E. Cannon, “An Overview of Multi-Reference Station Methods for cm-Level Positioning,” GPS Solutions, Vol. 4, No. 3, pp. 1-10 (2001).
    Frei, E. and G. Beutler, “Rapid Static Positioning Based on the Fast Ambiguity Resolution Approach ‘FARA’: Theory and First Results,” Manuscripta Geodaetica, Vol. 15, No. 6, pp. 325-356 (1990).
    Grafarend, E. W., “Mixed Integer-Real Valued Adjustmemt(IRA) Problems: GPS Initial Cycle Ambiguity Resolution by Means of the LLL Algorithm,” GPS Solutions, Vol. 4, No. 2, pp. 31-44 (2000).
    Han S. and C. Rizos, “Ambiguity Recovery for Long-Range GPS Kinematic Positioning,” Navigation, Journal of The Institute of Navigation, Vol. 44, No. 2, pp. 257-266 (1997).
    Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins, Global Positioning System Theory and Practice, Springer-Verlag, Wien (1997).
    King, R. W., E. G. Master, C. Rizos, A. Stolz, and J. Collins, Surveying with Global Positioning System -GPS-, Ferd. D mmlers Verlag, Bonn, pp. 1-128 (1985).
    Koch K.R., Parameter Estimation and Hypothesis Testing in Linear Models, Springer, New York (1999)
    Kuang, D., Schutz, B. E. and Watkins, M. M., “On the Structure of Geometric Positioning ingormation in GPS Measurements,” Journal of Geodesy, Vol. 71, pp. 35-43 (1996).
    Leick A., GPS Satellite Surveying, John Wiley and Sons, New York (1995).
    Liu, L. T., H. T. Hsu, Y. Z. Zhu, J. K. Ou, “A New Approach to GPS Ambiguity Decorrelation,” Journal of Geodesy, Vol. 73, No. 9, pp. 478-490 (1999).
    Mohamed, A. H. and K. P. Schwarz, “A Simple and Economical Algorithm for GPS Ambiguity Resolution on the Fly Using Whitening Filter,”Navigation, Vol. 45, No. 3, pp. 221-231 (1998).
    Raquet, J. and G. Lachapelle, “Development and Testing of a Kinematic Carrier-Phase Ambiguity Resolution Method Using a Reference Receiver Network,” Navigation, Vol. 46, No. 4, Winter (1999-2000).
    Remondi, B. W., “Pseudo-Kinematic GPS Results Using the Ambiguity Function Method,” Navigation, Vol. 38, No. 1, pp. 17-36 (1991).
    Shawn D. W., “Effect of Constraints and Multiple Receivers for On-The-Fly Ambiguity Resolution,” Master Thesis,Deparment of Geomatics Engineering, University of Calgary, Calgary, Alberta, Canada (1997)
    Teunissen, P. J. G., “The Least-Squares Ambiguity Decorrelation Adjustment a Method for Fast GPS Integer Ambiguity Estimation,” Journal of Geodesy, Vol. 70, No. 1-2, pp. 65-82 (1995).
    Teunissen, P. J. G. and A. Kleusberg, “GPS Observation Equations and Positioning Concepts,” In: Kleusberg, A. And P. J. G. Teunissen (eds), GPS for Geodesy, Lecture Notes in Earth Sciences, Vol. 60, No. 5, Springer-Verlag, Berlin, pp.175-217 (1996).
    Teunissen, P. J. G., P. J. De Jonge, and C. C. J. M. Tiberius, “Performance Of the LAMBDA Method for Fast GPS Ambiguity Resolution,” Navigation,Vol. 44, No. 3, pp. 373-383 (1997).
    Teunissen, P. J. G., N. F. Jonkman, and C. C. J. M. Tiberius, “Weighting GPS Dual Frequency Observations: Bearing the Cross of Cross-Correlation,”GPS Solutions, Vol. 2, No. 2, pp 28-37(1998).
    Xu, P., “Random Simulation and GPS Decorrelation”, Journal of Geodesy, Vol. 75, No. 7-8, pp. 408-423 (2001).

    QR CODE
    :::