| 研究生: |
紀詔元 Chao-yuan Chi |
|---|---|
| 論文名稱: |
高功率LED光電熱色特性整合模型之研究 Study of modeling on Optical-Thermal-Electric-Chromatic Characteristics for High-power LEDs |
| 指導教授: |
楊宗勳
Tsung-Hsun Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 發光二極體 、輻射光譜 |
| 外文關鍵詞: | spectrum, light-emitting diode |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,高功率固態照明光源技術不斷地演進,加上封裝製程與螢光粉材料等技術也持續地發展並日趨成熟,發光二極體(Light-emitting Diode, LED)的發光效率逐漸提升,由2006年的50 lm/W提升至2009年約250 lm/W。在未來的應用及發展應是屬於照明市場,LED正漸漸取代傳統光源。
由於發光二極體有許多的優點,像是節能減碳、低成本、發光效率高、體積小、壽命長和較純的光譜等優點,進而衍生出各種應用的照明光源產品,例如交通號誌燈、電式、手機被光源、路燈等等。然而,發光二極體的發光特性會隨著接面溫度而改變,例如發光強度的衰減、發光顏色的飄移和閃爍不定等,其原因歸因於驅動電流的調整、以及發光二極體內部接面溫度的變化。
本論文將探討發光二極體的輻射光譜、驅動電流和接面溫度三項物理特性,建立出光電熱色整合的輻射光譜模型。輻射光譜代表發光二極體的光、色特性,完全地相依於驅動電流、與接面溫度的變化,此輻射光譜模型將適用於任何封裝形式的發光二極體。
In the past few years, the package technology of light-emitting diodes (LEDs) has been of much more progress. The optical efficiency of LEDs is increased dramatically from 50 lm/W in 2006 to 250 lm/W in 2009. In the short future, LEDs has been penetrating to the general lighting market, especially replacing the traditional bulbs.
As of lots of advantages, such as energy saving, low cost, high luminous, long life time and pure spectrum, LEDs have been applied for many widespread range of applications. For example, traffic signals, LCD, TVs, mobile phones, general lighting and so on. However, the characteristic of the emission light will greatly vary as the junction temperature and the driving electric current change.
In this thesis, one model is proposed for intergrating the chromatic, thermal, optical, and electric characteristics. When monitoring the forward voltage under any certain electric current driven, the junction temperature can be evaluated in high accuracy. After obtaining the electric current and the junction temperature of LED in operation, the emission spectrum is also well predicted according to the proposed integration model.
[1] T. A. Edison, "Manufacture of filaments for incandescent electric lamps," (US Patents 470925, 1892).
[2] B. G. Streetman, and S. Banerjee, Solid State Electronic Devices (Prentice-Hall, 1995).
[3] K. H. Butler, Fluorescent Lamp Phosphors: Technology And Theory (Pennsylvania State University Press, 1980).
[4] 孫培真, 黃建晃, "新世代節能環保照明," 生活科技教育月刊 38, 104-113 (2005).
[5] 蔡慶龍, "從cd到lm談LED的照明應用趨勢," 電機月刊, 11(2), 244 ~ 257(2001)。
[6] B. Liaw, “Developing Trends in LED Lighting Industries as Viewed by Chip Suppliers”, Taiwan Solid State Lighting, A-5, Taipei Word Trade Center, 2012.
[7] 郭浩中, 賴芳儀, 郭守義, LED 原理與應用 (五南, 2009).
[8] H. J. Round, "A note on carborundum," Electrical world 49, 309 (1907).
[9] R. Burnham, W. Streifer, T. Paoli, and N. Holonyak, "Growth and characterization of AlGaAs/GaAs quantum well lasers," Journal of Crystal Growth 68, 370-382 (1984).
[10] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer," Applied Physics Letters 48, 353-355 (1986).
[11] S. Nakamura, "GaN growth using GaN buffer layer," Jpn. J. Appl. Phys 30, L1705-L1707 (1991).
[12] E. F. Schubert, T. Gessmann, and J. K. Kim, Light emitting diodes (Wiley Online Library, 2003).
[13] K. Safa, Optoelectronics And Photonics: Principles And Practices (Pearson Education India, 2009).
[14] D. A. Neamen, Semiconductor Physics And Devices: Basic Principles (Irwin, 1992).
[15] D. Yang , “Advanced LED Wafer-Level-Package in AlN for high performance and cost-effective solution”, Taiwan Solid State Lighting, B-4, Taipei Word Trade Center, 2012.
[16] Y. Xi, and E. Schubert, "Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method," Applied Physics Letters 85, 2163-2165 (2004).
[17] D. L. Barton, M. Osinski, P. Perlin, C. J. Helms, and N. H. Berg, "Life tests and failure mechanisms of GaN/AlGaN/InGaN light emitting diodes," IEEE, 276-281 (1997).
[18] C. M. Lee, C. C. Chuo, J. F. Dai, X. F. Zheng, and J. I. Chyi, "Temperature dependence of the radiative recombination zone in InGaN/GaN multiple quantum well light-emitting diodes," Journal of Applied Physics 89, 6554 (2001).
[19] S. Todoroki, M. Sawai, and K. Aiki, "Temperature distribution along the striped active region in high‐power GaAlAs visible lasers," Journal of Applied Physics 58, 1124-1128 (1985).
[20] I. D. Wolf, "Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits," Semiconductor Science and Technology 11, 139 (1996).
[21] D. A. Neamen, Semiconductor Physics And Devices: Basic Principles (Irwin, 1992).
[22] P. Bhattacharya, Semiconductor Optoelectronic Devices (Prentice-Hall, Inc., 1997).
[23] J. Cho, C. Sone, Y. Park, and E. Yoon, "Measuring the junction temperature of III‐nitride light emitting diodes using electro‐luminescence shift," physica status solidi (a) 202, 1869-1873 (2005).
[24] C. M. Wolfe, N. Holonyak, and G. E. Stillman, Physical properties of semiconductors (Prentice Hall Upper Saddle River, NJ, 1989).
[25] V. Colvin, M. Schlamp, and A. Alivisatos, "Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer," Nature 370, 354-357 (1994).
[26] Y. Gu, and N. Narendran, "A non-contact method for determining junction temperature of phosphor-converted white LEDs," SPIE, 107-114 (2004).
[27] E. Hong, "A Non-contact Method to Determine Junction Temperature of High-brightness (AlGaInP) Light-Emitting Diodes," (Master’s thesis, Rensselaer Polytechnic Institute, 2003).
[28] Y. Gu, N. Narendran, and J. P. Freyssinier, "White LED performance," (2004), pp. 119-124.
[29] J. Park, M. Shin, and C. C. Lee, "Measurement of temperature profiles on visible light-emitting diodes by use of a nematic liquid crystal and an infrared laser," Optics letters 29, 2656-2658 (2004).
[30] C. C. Lee, and J. Park, "Temperature measurement of visible light-emitting diodes using nematic liquid crystal thermography with laser illumination," Photonics Technology Letters, IEEE 16, 1706-1708 (2004)
[31] Y. Xi, J. Q. Xi, T. Gessmann, J. Shah, J. Kim, E. Schubert, A. Fischer, M. Crawford, K. Bogart, and A. Allerman, "Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods," Applied Physics Letters 86, 031907 (2005).
[32] Y. Xi, and E. Schubert, "Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method," Applied Physics Letters 85, 2163-2165 (2004).
[33] S. Chhajed, Y. Xi, T. Gessmann, J. Q. Xi, J. M. Shah, J. K. Kim, and E. F. Schubert, "Junction temperature in light-emitting diodes assessed by different methods," SPIE, 16-24 (2005).
[34] 林川發, "發光二極體的照明應用," 科學發展月刊 435, 36-41 (2009).
[35] E. S. Yang, Fundamentals of semiconductor devices (McGraw-Hill, 1978).
[36] H. Y. Chou, and T. H. Yang, "Method for controlling light emission of LEDs," SPIE 74220L (2009).
[37] CIE Publication 75:1988. “Spectral Luminous efficiency functions based upon brightness matching for monochromatic point sources, 2o,and 10o fields,”
[38] CIE publication 86:1988. “CIE 1988 2o spectral luminous efficiency functions of photopic vision,”
[39] R. W. G. Hunt, and M. Pointer, Measuring Colour (Wiley, 2011).
[40] R. W. Boyd, "Radiometry and the detection of optical radiation," New York, John Wiley and Sons, 1983, 261 p. 1 (1983).
[41] D. R. Falk, D. R. Brill, and D. G. Stork, "Seeing the light: optics in nature, photography, color, vision, and holography," Seeing the Light: Optics in Nature, Photography, Color, Vision, and Holography, by David R. Falk, Dieter R. Brill, David G. Stork, pp. 480. ISBN 0-471-60385-6. Wiley-VCH, November 1985. 1 (1985).
[42] K. R. Gegenfurtner, and L. T. Sharpe, Color vision: from genes to perception (Cambridge Univ Pr, 2001).
[43] J. Schanda, CIE Colorimetry (Wiley Online Library, 2007).
[44] J. Guild, "The colorimetric properties of the spectrum," Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 230, 149-187 (1932).
[45] H. Y. Chou, T. H. Hsu, and T. H. Yang, "Effective method for improving illuminating properties of white-light LEDs," SPIE, 33-41 (2005).
[46] N. Ohta, and A. Robertson, "Colorimetry: fundamentals and applications," Recherche 67, 02 (2005).
[47] D. L. MacAdam, "Visual sensitivities to color differences in daylight," JOSA 32, 247-273 (1942).
[48] D. L. MacAdam, "Specification of small chromaticity differences," JOSA 33, 18-26 (1943).
[49] G. Wyszecki, and W. S. Stiles, Color Science (Wiley New York, 1967).
[50] D. K. Schroder, Semiconductor material and device characterization (Wiley-IEEE press, 2006).
[51] 周虹宇,「發光二極體發光光譜特性之模型建立與維持穩定」,國立中央大學光電科學研究所,博士論文,民國100年6月。
[52] CREE, LED components and module, products, http://www.cree.com/led-components-and-modules/products/xlamp/ discrete-directional/xlamp-xrc
[53] CREE, LED components and module, products, http://www.cree.com/led-components-and-modules/products/xlamp/ discrete-directional/xlamp-xrc
[54] Lumileds, products, luxeon-h, http://www.philipslumileds.com/products/luxeon-h
[55] H. Y. Chou, C. C. Chen, and T. H. Yang, "Maintenance of stable light emission in high power LEDs," Microelectronics Reliability 52, 912-915 (2012).