| 研究生: |
陳鑫榮 Hsin-Rong Chen |
|---|---|
| 論文名稱: |
香蘭精和吩嗪的起始溶劑篩選和連續式共結晶之分離科技 Initial Solvent Screening and Continuous Co-crystallization of Vanillin and Phenazine as a Separation Technology |
| 指導教授: |
李度
Tu Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 香蘭精 、吩嗪 、分離 、共晶 、連續式系統 、溶劑篩選 |
| 外文關鍵詞: | Vanillin, Continuous Co-crystallization, Phenazine, Solvent Screening |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
分離純化的技術在工廠中隨處可見,為了使產品的純度和品質提高,這技術也被廣泛的應用製藥業、礦產業、食品業、石化業等需要純化產品之產業。
我們設計了一套流程,找出一分子(phenazine)可和最終產品(vanillin)產生共晶(1:2 co-crystals of phenazine-vanillin),藉由高低溫產生共晶(1:2 co-crystals of phenazine-vanillin),先讓共晶(1:2 co-crystals of phenazine-vanillin)和其他生化反應下副產品(vanillyl alcohol)分離,再利用溶劑篩選的方法,找出可分離共晶(1:2 co-crystals of phenazine-vanillin)的溶劑,使得可共晶之分子(phenazine)和其最終產物(vanillin)分離。
最後我們將甲苯中生成共晶的製程放到連續式共晶且調整不同流速(50、70、 90 ml/min),探討流速和顆粒大小之關係,發現顆粒大小和流速成反比。且希望藉著分離技術和連續式生產技術的整合,讓工廠純化的步驟有新的選擇。
以下列出我們的貢獻:
(1)在甲苯中做出共晶(1:2 co-crystals of phenazine-vanillin)。
(2)找到共晶有兩個同素異形體(熔點90oC和97oC)。
(3)運用溶劑篩選法找到可分離的共晶的溶劑如甲基第三丁基醚、丙酮、二甲基亞碸和甲醇。
(4)藉由降溫法在連續式共晶生產做出共晶(1:2 co-crystals of phenazine-vanillin)。
(5)比較連續式共晶和批次共晶發現連續式共晶的產率(51.2%)大於批次共晶產率(34.9%)。
(6)計算連續式共晶和批次共晶的晶體生長速率和成核速率的mixed suspension, mixed product removal (MSMPR),生長速率:批次共晶(4.1×10-4 mm/s)大於連續式共晶(2.6×10-4 mm/s)、成核速率:連續式共晶(2.8×104 no./l∙s)大於批次共晶(3.4×103 no./l∙s)。
Separation and purification technologies can be seen in the pharmaceutical industry, mining industry, the food industry, petrochemical industry and other need purgative industry.
We have devised a process to use a molecule (i.e. phenazine) which can form co-crystals (i.e. 1:2 co-crystals of phenazine-vanillin) with the final product (i.e. vanillin) by temperature cooling. Co-crystallization of 1:2 co-crystals of phenazine-vanillin can be use to separate vanillin from other by-products such as vanillyl alcohol in bio-based reactions. Initial solvent screening method is also used to identify synthesis solvents and decomplexation solvents of 1:2 co-crystals of phenazine-vanillin.
Finally, 1:2 co-crystals of phenazine-vanillin can be prepared in toluene, then we extended it to continuous co-crystallization and adjust different volume flow rates (i.e. 50, 70, 90 ml/min ). We looked at different volume flow rates to see the corresponding change of size distribution. We observed that crystals increased in sizes with the increase in the mean residence time. We hope that through the integration of separation and continuous co-crystallization technology, new options can be provided for manufacturing purification steps.
We also list out the significant contributions of this thesis.
We made 1:2 co-crystals of phenazine-vanillin in toluene,
We found out 1:2 co-crystals of phenazine-vanillin have two different forms with m.p. = 90oC and m.p. = 97 oC,
We used solvent screening method to find out that MTBE, acetone, DMSO and methanol can decomplex separate 1:2 co-crystals of phenazine-vanillin,
(4) We successfully made 1:2 co-crystals of phenazine-vanillin by continuous co-crystallization by temperature cooling,
(5) We compared the mass balance of continuous co-crystallization and batch co-crystallization individually, and continuous co-crystallization has a better yield (51.2%), and the one for batch co-crystallization (34.9%).
(6) We calculated crystal growth rates and nucleation rates for continuous co-crystallization with the one of batch co-crystallization. By mixed suspension, mixed product removal (MSMPR) model Growth rate: Batch co-crystallization (4.1×10-4 mm/s) > continuous co-crystallization (2.6×10-4 mm/s). Nucleation rate: Continuous co-crystallization (2.8×104 no./l∙s)> batch co-crystallization (3.4×103 no./l∙s).
Myerson, A. S. Handbook of Industrial Crystallization, 2nd ed., Butterworth-Heinemann: Boston, 2002, pp. 33-63.
Jones, A. G. Crystallization Process Systems, Butterworth-Heinemann: Oxford, 2002, pp. 80-120.
Mullin J. W. Crystallization, 4th ed., Butterworth-Heinemann: Oxford, 2002, pp. 261-284.
Randolph, A. D.; Larson, M. A. Theory of Particulate Process: Analysis and Techniques of Continuous Crystallization 2nd ed., Toronto: Academic Press, 1988, pp. 86-132.
Nyvlt, J. Solid-liquid Equilibria, Amsterdam: Elsevier, 1977, pp. 13-26.
Nyvlt, J. Design of Crystallizers, CRC Press, Boca Raton, FL 1992, pp. 51-80.
Chen, J. B.; Sharma, J. M. B.; Evans, A. S. M. Pharmaceutical Crystallization Cryst. Growth Des. 2011, 11 (4), 887 – 895.
Ditl, P.; Beranek, L.; Rieger, F. Simulation of a Stirred Sugar Boiling Pan. Zuckerindustrie 1990, 115 (8), 667–676.
Randolph, A.; Larson, M.; Theory of Particulate Processes. Academic Press, San Diego, 1988, pp. 78-105.
Childs, S. L.; Zaworotko, M. J. The Reemergence of Co-crystals: The Crystal Clear Writing Is on the Wall Introduction to Virtual Special Issue on Pharmaceutical, Co-crystals. Cryst. Growth Des. 2009, 9 (10), 4208–4211.
Schultheiss, N.; Newman, A. Pharmaceutical Co-crystals and Their Physicochemical Properties. Cryst. Growth Des. 2009, 9 (6), 2950–2967.
Adahchour, M.; Vreuls, R. J. J. Trace-Level Determination of Polar Flavour Compounds in Butter by Solid-Phase Extraction and Gas Chromatography–Mass Spectrometry. J. of Chrom. A. 1999, 844 (2), 295–305.
Blank, I.; Sen, A.; Grosch, W. Potent Odorants of the Roasted Powder and Brew of Arabica Coffee. Zeitschrift fur Lebensmittel-Untersuchung and -Forschung A. 1992, 195 (3), 239–245.
Brenes, M.; Garcia, A.; Garcia, P.; Rios, J. J.; Garrido, A. Phenolic Compounds in Spanish Olive Oils. J. Food Chem. 1999, 47 (9), 3535–3540.
Buttery, R. G.; Ling, L. C. Volatile Flavor Components of Corn Tortillas and Related Products. Dumont. 1995, 43 (7), 1878–1882.
Dignum, M. J. W.; Kerlera, J.; Verpoorte, R. Vanilla Production: Technological, Chemical, and Biosynthetic Aspects. Food Inter. 2001, 17 (2), 119–120.
Esposito, L. J.; Formanek, K.; Kientz, G.; Mauger, F.; Maureaux, V.; Robert, G.; Truchet, F. Vanillin. New York: John Wiley & Sons. 1997, pp. 812–825.
Gobley, N.-T. Recherches sur le principe odorant de la vanille. Paris : Thunot, 1858, pp. 401–405.
Hocking, M. B. Vanillin: Synthetic Flavoring from Spent Sulfite Liquor. J. of Chem. Edu. 1997, 74 (9), 1055–1059.
Guth, H.; Grosch, W. Odorants of Extrusion Products of Oat Meal: Changes During Storage. Zeitschrift fur Lebensmittel-Untersuchung und -Forschung A. 1995, 196 (1), 22–28.
Kermasha, S.; Goetghebeur, M.; Dumont, J. Determination of Phenolic Compound Profiles in Maple Products by High-Performance Liquid Chromatography. J. Food Chem. 1995, 43 (3), 708–716.
Havkin-Frenkel, D. Vanillin Production U.S. Patent 7,226,783 B1, Jun. 5, 2007.
Newman, A. W.; Byrn, S. R. Solid-state analysis of the active pharmaceutical ingredient in drug products Drug Discovery Today 2003, 8, 898-904.
Gotoh, K.; Masuda, H.; Higashitani, K. Powder-Handling Operation. Chapter 5 of In Powder Technology Handbook, 2nd ed.; Marcel Dekker: New York, 1997;pp. 720-730.
Gotoh, K.; Masuda, H.; Higashitani, K. Powder-Handling Operation. Chapter 5 of In Powder Technology Handbook, 2nd ed.; Marcel Dekker: New York, 1997;pp. 413-423.
Gotoh, K.; Masuda, H.; Higashitani, K. Powder-Handling Operation. Chapter 5 of In Powder Technology Handbook, 2nd ed.; Marcel Dekker: New York, 1997;pp. 659-661.
Pavia, D. L.; Lampman, G. M.; Kriz, G.S. Infrared Spectroscopy. InIntroduction to Spectroscopy, 3rd ed.; Brooks/COLE Thomson Learning: Mississippi, 2001, pp. 13-24.
Haines, P. J. Wiburn, F. W. Differential Thermal Analysis and Differential Scanning Calorimetry. InThermal Methods of Analysis, 1st ed.; Blackie Academic and Professional: Scotland, 1995; pp. 69-114.
Tiwary, A.K. Modification of Crystal Habit and Its Role in Dosage Form Performance Drug Dev. Ind. Pharm. 2001, 27, 699-709.
Kriss, T. C.; Kriss, V. M.; Vesna, M. History of the Operating Microscope: From
Magnifying Glass to Microneurosurgery, Neurosurgery, 1998,42, 899-907.
Skoog, D. A.; Holler, F. J.; Nieman, T. A. Components of Optical Instrument, InPrinciples of Instrumental Analysis, 5th ed.; Thomson Learning, Mississippi, USA, 2001; pp. 182-183.
Bauer-Brandl, A. Polymorphic Transitions of Cimetidine During Manufacture of Solid Dosage Forms, Int. J. Pharm., 1996, 140, 195-206.
Brittain, H. G. Methods for the Characterization of Ploymorphs and Solvates, Chapter 6 of Polymorphism in Pharmaceutical Solids, Marcel Dekker, New York, USA, 1999 ; pp. 227-271.
Giron, D. Thermal Analysis, and Calorimetric Methods in the Characterisation of
Polymorphs and Solvates, Thermochim. Acta, 1995, 245, 1-59.
Clas, S. D.; Dalton, C. R.; Hancock, B. C. Differential Scanning Calorimetry:
Applications in Drug Development, Pharm. Sci. Technol. Today, 1999, 2, 311-320.
Lu, E.; Rodriguez-Hornedo, N.; Suryanarayanan, R. A rapid thermal method for
cocrystal screening, CrystEngComm, 2008,10, 665 – 668.
Skoog, D. A.; Holler, F. J.; Nieman, T. A. Thermal Methods, InPrinciples of Instrumental Analysis, 5th ed.; Thomson Learning: Mississippi, 2001; pp. 798-801.
Murthy, N. S.; Reidinger, F. X-ray Analysis, InMatericals Characterization
and Chemical Analysis, J. P. Sibilia, Wiley-Vch, New York, 1996, pp. 143-149.
Huang, T. C. Automatic X-ray Single Crystal Structure Analysis System for Small
Molecule, The Rigaku J., 2004, 21, 43-46.
Zhang , Y.; Grant, D. J. W. Similarity in Structures of Racemic and Enantiomeric
Ibuprofen Sodium Dehydrates, Acta Crystallogr. C, 2005, 61, pp. m435-m438.
Hansen, L. Kr.; Perlovich, G. L.; Bauer-Brandl, A. Redetermination and H-atom
Refinement of (S)-(+)-Ibuprofen, Acta Crystallogr. E: Struct. Rep. Online, 2003,59, 1357-1358.
Hansen, L. Kr.; Perlovich, G.; Bauer-Brandl, L. A. Redetermination and H-atom
Refinement of (S)-(+)-Ibuprofen. corrigendum, Acta Crystallogr. E, 2006, 62, e17-e18.
Ciacovazzo, C.; Monaco, H. L.; Artioli, G.; viterbo, D.; Ferraris, G.; Gilli, G.; Zanotti, G.; Catti, M. Experimental Method in X-ray Andneutron Crystallography, InFundamentals of Crystallography, 2nd ed.; Oxford university press, New York, 2002; p. 336.
Glusker, J. P.; Trueblood, K. N. Experimental Measurement, InCrystal Structure Analysis A Primer, 2nd ed.; Oxford university press, New York, 1985; pp. 42-47.
Skoog, D. A.; Holler, F. J.; Nieman, T. A. A Introduction to Ultraviolet/Visible Molecular Absorption Spectrometry, InPrinciples of Instrumental Analysis, 5th ed., Thomson Learning, Mississippi, 2001; pp. 300-350.
Heng, P. W. S.; Chan, L. W. Drug Substance and Excipient Characterization, in
D. M. Parikh, Handbook of Pharmaceutical Granulation Technology, (Marcel Dekker, Inc., New York, USA, 1997, pp. 32-34.
Perry, R. H.; Green, D. W. Perry’s Chem ical Engineers’ Handbook, 7th Ed. (The McGraw-Hill Companies, Inc., New York, USA, 1997), p. 20-9.
Ibid., pp. 19-18-19-23.
Filho,O. P.; LaTorre, G. P.; Hench, L. L. Effect of Crystallization on Apatite-layer
Formation of Bioactive Glass 45S5. J. Biomed. Mater. Res. 1996, 30 (4), 509-514.
Pan, A.; Lin, X.; Liu, R.; Li, C.; He, X.; Gao, H.; Zou, B. Surface Crystallization Effects on The Optical and Electric Properties of CdS Nanorods. Nanotechnology, 2005, 16 (10), 2402–2406.
Akpalu, Y.; Hsiao, L. B. S.; Stein, R. S.; Russell, T. P.; Egmond, J. V.; Muthukumar, M. Structure Development during Crystallization of Homogeneous Copolymers of Ethene and 1-Octene: Time-Resolved Synchrotron X-ray and SALS Measurements. Macromol. 1999, 32 (3), 765-770.
Ahari, H.; Bedard, R. L.; Bowes, C. L.; Coombs, N.; Dag, O. M.; Jiang, T.; Ozin, S.Petrov , G. A.; Sokolov, I.; Verma, A.; Vovk, G.; Young, D. Effect of Microgravity on The Crystallization of a Self-assembling Layered Material. Nature 1997, 38 (6), 857 - 860.
Wright, A. J.; McGauley, S. E.; Narine, S. S.; Willis, W. M.; Lencki, R. W.; Marangoni, A. G. Solvent Effects on the Crystallization Behavior of Milk Fat Fractions. J. Agric. Food Chem. 2000, 48 (4), 1033-1040.
Morissette, S. L.; Almarsson, O.; M. Peterson, L.; Remenar, J. F.; Read, M. J.; Lemmo, A. V.; Ellis, S.; Cima, M. J.; Gardner, C. R. High-Throughput Crystallization: Polymorphs, Salts Co-crystals and Solvates of Pharmaceutical Solids. Adv. Drug Del. Rev. 2004, 56 (3), 275-300.
Braga, D.; Grepioni, F. Making Crystals from Crystals: a Green Route to Crystal
Engineering and Polymorphism. Chem. Commun. 2005, 7 (29), 3635-3645.
Hilfiker, R.; Berghausen, J.; Blatter, F.; Burkhard, A.; Paul, S. M. D.; Freiermuth,B.; Geoffroy, A.; Hofmeier, U.; Marcolli, C.; Siebenhaar, B.; Szelagiewicz, M.; Vit, A.; Raumer, M. V. Polymorphism-Integrated Approach from High-throughput Screening to
Crystallization Optimization. J. Therm. Anal. Calorim. 2003, 73 (2), 429-440.
Grant, D. J. W.; Theory and Origin of Polymorphism, In Polymorphism in pharmaceutical solids, Marcel Dekker, New York, 1999, pp. 1-21.
Yurteri, C. U.; Mazumder, M. K.; Grable, N.; Ahuja, G.; Trigwell, S.; Biris, A. S.; Sharma, R.; Sims, R. A. Electrostatic Effects on Dispersion, Transport, and Deposition of Fine Pharmaceutical Powders: Development of an Experiment Method for Quantitative Analysis. Particulate Sci. Tech. 2002, 20 (1), 59-79.
York, P. Solid-State Properties of Powders in the Formulation and Processing of Solid Dosage Forms. Int. J. Pharm. 1983, 14 (1), 1-28.
Robert H. H. Heuvel, V. D.; Fraaije, M. W.; Laane, C.; van Berkel, W. J. H. Enzymatic Synthesis of Vanillin. J. Agric. Food Chem. 2001, 49 (6), 2954-2958.
Karathanos, V. T.; Mourtzinos, I.; Yannakopoulou, K.; Andrikopoulos, N. K. Study of the Solubility, Antioxidant Activity and Structure of Inclusion Complex of Vanillin with β-cyclodextrin. Food Chem. 2007, 101 (2), 652–658.
Velavan, R.; Sureshkumar, P.; Sivakumar, K. Vanillin-I. Acta Cryst. 1995, C51, 1131-1133.
Guang, Z.; Jianzhi, H.; Xiaodong, Z.; Lianfang, S.; Chaohui, Y.; Webb, G.A.
Quantum Chemical Calculation and Experimental Measurement of the 13C Chemical Shift Tensors of Vanillin and 3,4-Dimethoxybenzaldehyde. Chem. Phys. Lett. 1997, 266 (5), 533-536.
Brittain, H. G.; Grant, D. J. W. Effect of Polymorphism and Solid-State Solvation on Solubility and Dissolution Rate. In Polymorphism in pharmaceutical solids, Marcel Dekker, New York, 1999, pp. 279-330.
Bhattachar, S. N.; Deschenesa, L. A.; Wesleya, J. A. Solubility: It Is Not Just for
Physical Chemists. Drug Discov. Today 2006, 11 (21), 1012-1018.
Price, C. J. Take Some Solid Steps to Improve Crystallization. Chem. Eng. Prog. 1997, 93 (9), 34-43.
Winn, D.; Doherty, M. F. A New Technique for Predicting the Shape of Solution-Grown Organic Crystals. AlChE J. 1998, 44 (11), 2501-2514.
Mullin, J. W. Crystal Habit Modification. In Crystallization, 3rd Ed.,
Butterworth-Heinemann, London, England, 1997, pp. 248-250.
Tiwary, A. K. Modification of Crystal Habit and Its Role in Dosage from Performance. Drug Dev. Ind. Pharm. 2001, 27 (7), 699-709.
Rasenack, N.; Muller, B. W. Crystal Habit and Tabletting Behavior. Int. J. Pharm. 2002, 244 (1), 45-57.
Lahav, M.; Leiserowitz, L. The Effect of Solvent on Crystal Growth and Crystal Habit. Chem. Eng. Sci. 2001, 56 (7), 2245-2253.
Lee, T.; Chang, G. D. Engineering Processing Properties of Acetaminophen by Cosolvent Screening. Pharm. Tech. 2010, 34 (8), 61-68.
Anderson, N. G. Practical Process Research and Development. Academic Press: New York, 2000, pp. 76-96.
Lee, T.; Lin, M. S. Sublimation Point Depression of Tris8-hydroxyquinoline) aluminum(III) (Alq3) by Crystal Engineering. Crys. Growth Des. 2007, 7 (9), 1803-1810.
Gao, D.; Raytting, J. H. Use of Solution Calorimetry to Determine the Extent of
Crystallinity of Drugs and Excipients. Int. J. Pharm. 1997, 151 (2), 183-192.
Vargeese, A. A.; Joshi, S. S.; Krishamurthy, V. N. Effect of Method of Crystallization on the IV-III and IV-II Polymorphic Transition of Ammonium Nitrate. J. Hazard, Mater. 2009, 161 (1), 373-379.
Braga, D.; Grepioni, F.; Maini, L.; Mazzeo P. P.; Rubini, K. Solvent-Free Preparation of Co-crystals of Phenazine and Acridine with Vanillin. Therm. Acta. 2010, 507-508 (1), 1-8.
Childs, S. L.; Zaworotko, M. J. The Reemergence of Co-crystals: The Crystal Clear Writing Is on the Wall Introduction to Virtual Special Issue on Pharmaceutical Co-crystals. Cryst. Growth Des. 2009, 9 (10), 4208–4211.
Schultheiss, N.; Newman, A. Pharmaceutical Co-crystals and Their Physicochemical Properties. Cryst.Growth Des. 2009, 9 (6), 2950–2967.
Bis, J. A.; Vishweshwar, P.; Weyna, D.; Zaworotko, M. J.; Hierarchy of Supramolecular Synthons: Presistnet Hydroxyl‧‧‧Pyridine Hydrogen Bonds in Co-crystals That Contain a Cyano Acceptor. Mol. Pharmaceutics 2007, 4 (3), 401–416.
Matthias, M.; Ekta, G. A.; Dmitri, V. M.; Rolf, B.; Linda, S. T.; Wulf, B. Of Two Make One: The Biosynthesis of Phenazines. ChemBioChem 2009, 10 (14), 2295–2304.
Dignum, M. J. W.; Kerler, J.; Verpoorte, R.; Vanillin Production: Technological, Chemical, and Biosynthetic Aspect. Food Rev. Int. 2001, 17 (2), 119-120.
Anklam, E.; Gaglione, S.; Moller, A. Oxidation Behavior of Vanillin in Dairy Products. Food Chem. 1997, 60 (1), 43-51.
Ibrahim, M. N. M., Sipaut, C. S.; Yusof, N. N. M. Purification of Vanillin by a Molecular Imprinting Polymer Technique. Sep. Purif. Technol. 2009, 66 (3), 450-456.
Ghazali, N. F.; Ferreira, F. C.; White, A. J. P.; Livingstona, A. G. Enantiomer Separation by Enantioselective Inclusion Complexation–organic Solvent Nanofiltration. Tetrahedron: Asymmetry. 2006, 17, 1846–1852.
Martin, K.; Izumi, T.; White, A. J. P.; Armstrong, A. and Blackmond, D. G. Emergence of Solution-Phase Homochirality via Crystal Engineering of Amino Acids. J. Am. Chem. Soc. 2007, 129 (24), 7657-7660.
Hu, Z.; Liu, J.; Shen, L.; Xu, D.; Xu, Y. Separation of 4-Aminobenzoic Acid by Co-crystallization: Crystal Structure of The Complex of 4-Aminobenzoic Acid with (2R,3R)-Tartaric Acid. J. Chem. Cryst. 2002, 32 (12), 525-529.
Aaker?oy, C. B.; Salmon, D. J. Building Co-crystals with Molecular Sense and Supramolecular Sensibility. CrystEngComm. 2005, 7 (72), 439-448.
Bak, A.; Gore, A.; Yanez, E.; Stanton, M.; Tufekcic, S.; Syed, R.; Akrami, A.; Rose, M.; Surapaneni, S.; Bostick, T.; King, A.; Neervannan, S.; Ostovic , D.; Koparkar, A. The Co-crystals Approach to Improve The Exposure of a Water-insoluble Compound: AMG 517 Sorbic Acid Co-crystals Characterization and Pharmacokinetics. J. Pharm. Sci. 2008, 97 (9), 3942-3956.
Blagden, N.; de Matas, M.; Gavan, P. T.; York, P. Crystal Engineering of Active Pharmaceutical Ingredients to Improve Solubility and Dissolution Rates. Adv. Drug Delivery Rev. 2007, 59 (7), 617-630.
Remenar, J. F.; Morissette, S. L.; Peterson, M. L.; MacPhee, B. J. M.; Guzman , H. R.; Almarsson, o. Crystal Engineering of Novel Co-crystals of A Triazole Drug with 1.4-dicarboxylic Acids. J. Am. Chem. Soc. 2003, 125 (28), 8456–8457.
McNamara, D. P.; Childs, S. L.; Giordano, J.; Iarriccio, A.; Cassidy, J.; Shet, M. S.; Mannion, R.; O’Donnell , E.; Park, A. Use of A Glutaric Acid Cocrystal to Improve Oral Bioavailability of A Low Solubility API. Pharm. Res. 2006, 23 (8) , 1888-1897.
Remenar, J. F.; Peterson, M. L.; Stephens, P. W.; Zhang, Z.; Zimenkov, Y.; Hickey, M. B. Celecoxib: Nicotinamide Dissociation: Using Excipients to Capture The Co-crystal’s Potential. Mol. Pharmaceutics 2007, 4 (3) , 386-400.
Lee, T.; Wang, P. Y. Screening, Manufacturing, Photoluminescence, and Molecular
Recognition of Co-crystals: Cytosine with Dicarboxylic Acids. Cryst. Growth Des. 2010, 10 (3), 1419-1434.
Urbanus, J.; Roelands, C. P. M.; Verdoes, D.; Jansens, P. J.; ter Horst, J. H. Co-Crystalslization as a Separation Technology: Controlling Product Concentrations by Co-crystals. Cryst. Growth Des. 2010, 10 (3), 1171-1179.
Randolph, A. D.; Larson, M. A. In Theory of Particulate Processes, 2nd ed.; Academic Press: San Diego, 1988. pp. 287-302.
Lindenberg, C.; Mazzotti, M. Continuous Precipitation of L-Asparagine Monohydrate in a Micromixer: Estimation of Nucleation and Growth Kinetics. AIChE J. 2010, 57 (4), 942-950.
Raphael, M.; Rohani, S.; Sosulski, F. Can. Isoelectric Precipitation of Sunflower Protein in A Tubular Precipitator. J. Chem. Eng. 1995, 73 (4) , 470–483.
Virkar, P. D.; Hoare, M.; Chan, M. Y. Y.; Dunnill, P. Kinetics of The Acid Precipitation of Soya Protein in A Continuous-flow Tubular Reactor. Biotechnol. Bioeng. 1982, 24 (4), 871–887.
Vacassy, R.; Lemaitre, J.; Hofmann, H.; Gerlings, J. H. Calcium Carbonate Precipitation Using New Segmented Flow Tubular Reactor. AIChE J. 2000, 46 (6) , 1241–1252.
Mendez del Rio, J. R.; Rousseau, R. W. Batch and Tubular-batch Crystallization
of Paracetamol: Crystal Size Distribution and Polymorph Formation. Cryst. Growth Des. 2006, 6 (6), 1407-1414.
Kawase, M.; Suzuki, T.; Miura, K. Growth Mechanism of Lanthanum Phosphate Particles by Continuous Precipitation. Chem. Eng. Sci. 2007, 62 (18), 4875– 4879.
Constable, D. J. C.; Jimenez-Gonazlez C.; Henderson R. K. Perspective on Solvent Use in The Pharmaceutical Industry. Org. Proc. Res. Dev. 2007, 11 (1). 133-137.
Havkin-Frenkel D. Vanillin Production U.S. Patent 7,226,783 B1, Jun. 5, 2007.
Beauer-Brandl, A. Polymorphic Transitions of Cimetidine During Manufacture of Solid Dosage Forms. Int. J. Pharm. 1996, 140 (2), 195-206.
Colthup, N. B.; Daly, L. H.; Wiberley, S. E. In Introduction to Infrared and Raman Spectroscopy, 3rd ed.; Academic Press, Inc.: New York, 1990; Chapter 5, pp. 313-318.
Alvarez, A. J.; Myerson, A. S. Continuous Plug Flow Crystallization of Pharmaceutical Compounds. Cryst. Growth Des., 2010, 10 (5), 2219–2228.
Randolph, A. D.; Larson, M. A. Theory of Particulate Processes.; Academic Press, Inc.: New York, 1971; Chapters 4, pp. 65-78.
Su, C. S.; Lo, W. S.; Lien, L. H. Micronization of Fluticasone Propionate using Supercritical Antisolvent Process. Chem. Eng. Technol. 2011, 34 (4), 535-541.