| 研究生: |
張俊德 Jen-der Cheng |
|---|---|
| 論文名稱: |
溶劑、親核劑(QBr)陽離子之結構及溫度對相轉移催化反應BzCl + QBr<--> BzBr + QCl 之反應 |
| 指導教授: |
王天財
Ten-Tsai Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 親核取代反應 、季銨鹽 |
| 外文關鍵詞: | PTC |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主旨在於探討溶劑、溫度效應與親核劑(QBr)陽離子結構效應對相
轉移催化反應BzCl + QBr<--> BzBr + QCl(Q = Et4N, Pr4N, Bu4N, Pent4N,
BzEt3N, BzPr3N, BzBu3N)之影響。
溶劑效應方面: 選擇芳香族非質子(aprotic aromatic)溶劑(δ= 9.2 ~
11.1)及脂肪族非質子(aprotic aliphatic)溶劑(δ= 7.3 ~ 13),以莫耳比BzCl :
BzBu3NBr : solvent = 1 : 0.03 : 30,反應溫度40 0C,以溶解度參數δ
(solubility parameter)作為主要探討溶劑效應之依據。
由實驗之結果發現:ln kf、ln kb 與δ呈線性關係;由實驗結果得知當反應溶
劑為芳香族非質子溶劑時其反應速率常數比為kf,max / kf,min=13.6、kb.max /
kb,min=19.3,而當反應溶劑為脂肪族非質子溶劑時其反應速率常數比為kf,max
/ kf,min=21.2、kb.max / kb,min=163.1,由此可得知不同的溶劑對反應之影響不如
季化反應,這是由於反應物BzBu3NBr 為離子對(極強偶極),而其活化複合
體為四極(quadrupole),所以溶劑效應對反應之相對速率影響不如季化反應
明顯。
溫度效應方面:以芐基氯(3g)與芐基三丁基銨溴(0.253g)為反應物,溶
劑則使用三氯甲烷(84.87g)(莫耳比BzCl : BzBu3NBr : CHCl3 = 1 : 0.03 :
30),反應溫度範圍30oC ~ 50 oC;以求取不同反應溫度下之反應速率常數,
則可求得此反應之反應動力學參數,如活化吉布氏自由能、活化焓、活化
熵和活化能( 0 , ≠
f G ∆ 、0 , ≠
b G ∆ 、0 G ∆ 、0 , ≠
f H ∆ 、0 , ≠
b H ∆ 、0 H ∆ 、0 , ≠
f S ∆ 、0 , ≠
b S ∆ 、0 S ∆ 、
af E 、ab E )。
kf
kb
由實驗結果發現: 而由實驗中所求得之Ea 和0 , ≠ ∆H 之值與理論
RT H Ea + = ≠ 0 , ∆ 相符合,故本研究所求得之動力學參數( 0 , ≠
f G ∆ 、0 , ≠
b G ∆ 、
0 G ∆ 、0 , ≠
f H ∆ 、0 , ≠
b H ∆ 、0 H ∆ 、0 , ≠
f S ∆ 、0 , ≠
b S ∆ 、0 S ∆ 、af E 、ab E )頗為正確。
陽離子結構效應方面: 以不同之QBr (Q = Et4N, Pr4N, Bu4N, Pent4N,
BzEt3N, BzPr3N, BzBu3N)為反應物,莫耳比BzCl : QBr : CHCl3(solvent) = 1 :
0.03 : 30,反應溫度40 0C,探討親核劑陽離子(Q)結構對反應速率之影響。
由實驗結果發現:發現隨著QBr 陽離子碳數的增加,及QBr(aq)之pH 值減
小,kf 與kb 隨著變大,且kb 皆大於kf,對稱型Q:Pent4N>Bu4N>Pr4N>
Et4N 及非對稱型Q:BzBu3N>BzPr3N>BzEt3N;並分別從kf 及kb 大小可
判斷,接於Br-之Q+與接於Cl-之Q+之反應性亦隨Q+之碳數增加,而反應
性增加。
[1] J. Jarrouse and C. R. Hebd. Seances Acad. Sci. Ser., C232, 1424
(1951).
[2] C. M. Starks, “Phase-transfer Catalysis. I. Heterogeneous Reaction
Involving Anion Transfer by Quaternary Ammonium and
Phosphonium Salts”, J. Am. Chem. Soc., 93(1), 195(1971).
[3] C. M. Starks, “Selecting a Phase Transfer Catalysis”, Chemtech, 110
(1980).
[4] P. Hodge and D. C. Sherrington, “Polymer-supported Reaction in
Organic Synthesis”, John Wiley and Sons(1980).
[5] 徐金榮, “葡萄糖之有機金屬相轉移催化氫化研究”, 碩士論文,
國立中央大學化工系(1994).
[6] T. W. G. Solomons, “Organic Chemistry”, 4rd, Wie Wiley, Ch5.,
pp193-245(1988).
[7] 張其晃, ”有機氯化物與溴芐基三丁基銨之親核取代反應研究”,
碩士論文, 國立中央大學化工系(1991).
[8] 蘇國銘, “叔胺與碘丁烷之親核取代反應之溶劑效應與結構效
應”, 碩士論文, 國立中央大學化工系(1996).
[9] 沈雨生,“離子對的聚集作用及幾種對稱溴化烷基銨鹽的合成
(IV)”, 吉林大學自然科學學報, l.3, P113-116(1987).
[10] Sumitomo Chemical Co., Ltd., “Tetra-n-butylammonium
Bromide”, Jpn. Kokai Tokkyo Koho JP 59 27,854 [84,27,854] (Cl.
C07C87/30)
[11] T. Yamashita and T. Tomono, “Preparation of High-Purity
Quaternary Ammonium Halides from Tertiary Amines”, Jpn.
Kokai Tokkyo JP 10 287,630 [98 287,630]
[12] T. kodai, “Manufacture of High-Purity Quaternary Ammonium
Halides”, Jpn. Kokai Tokkyo JP 63,233,956 [88,233,956]
[13] 游昆麟, “三乙胺與鹵化物之親核取代反應之溶劑效應與結構
效應”, 國立中央大學化工所碩士論文,1996
[14] S. Uchama, R. Nakano and H. Abe, “Preparation of Quaternary
Alkylammonium Carboxylate Salts”, Jpn. Kokai Tokkyo Koho JP
06,329,603 [94,329,603]
[15] J. R. Ochoa Gomez and M. Tarancon Estrada, “Electrolytic
Preparation of Quaternary Ammonium Hydroxides and
Alkoxides”, Span. ES 2,019,550 (Cl. C25B3/00)
[16] J. R. Ochoa Gomez and M. Tarancon Estrada, “Electrosynthesis of
Quaternary Ammonium Hydroxides ”, J. Appl. Electrochem.,
Vol.21, No.4, P365-367, 1991
[17] S. Takahashi and M. Uchama, “Manufacture of High-Purity
Quaternary Ammonium Hydroxides ”, Jpn. Kokai Tokkyo JP
63,109,183 [88,109,183] (Cl. C25B3/00)
[18] J. Cui and L. Zeng, “Simple Synthetic Method for Quaternary
Quinine Ammonium Salts”, Huaxue Shiji , Vol.20, No.3,
P187-188, 1998
[19] A. Sato, K. Hamano and T. Wakui, “Preparation of Quaternary
Ammonium Salt Flakes”, Jpn. Kokai Tokkyo JP 10 182,565 [98
182,565] (Cl. C07C211/63)
[20] S. Nakano, “Method for The Rapid Preparation of
Benzyl-Substituted Quaternary Ammonium Salts Using Water or
Water-Containing Organic Solvents”, Eur. Pat. Appl. EP 791,575
(Cl. C07C209/12)
[21] D. Chen and Y. Peng, “Tablets of Fabric Softening Agents and
Preparation The Reof.”, Faming Zhuanli Shenqing Gongkai
Shuomingshu CN 1,109,932 (Cl. D06M13/402)
[22] M. Niu, Y. He and X. Ye, “Hofmann Elimination of Quaternary
Ammonum Hydroxides. III . Conformational Rule for Hofmann
Elimination”, Beijing Dauxue Xuebao, Ziran Kexueban, Vol.30,
No.4, P429-433, 1994
[23] T. T. Wang and T. C. Huang, “Kinetic of The Quaternization of
Tertiary Amines with Benzyl Chloride”, Chem. Eng. J., Vol.53,
P107-113, 1993
[24] M. A. Vincze, S. Palea and G. R. Crisan, “Preparation of
n-Alkyl-n-bis(β -hydroxyethyl)- benzylammonium Chlorides and
n-Alkyl-nbis(polyoxyethylene) benzylammonium Chlorides”,
ROM. RO 106,250 (Cl. C07C211/63)
[25] T. Yamashita and M. Hatayama, “Preparation of Quaternary
Ammonium Bromides and Iodides from Tertiary Amines and
Benzyl Chloride”, Jpn. Kokai Tokkyo Koho JP 0405,263 [92
05,263] (Cl. C07C211/63)
[26] W. Y. Su, “Continuous Process for Preparing Quaternary
Ammonium Salts ”, U.S. US 5,041,664 (Cl.
564-296;C07C209/12)
[27] V. L. Afanas’eva, I. V. Petrushina and L. Sh. Gorodetskii,
“Formation of Triethylbenzylammonium Chloride , A Phase
Transition Catalyst”, Khim.-Farm. Zh. , Vol.18, No.10,
P1273-1274, 1984
[28] C. Yuan, Z. Wu and Y. Chen, “Synthesis of Quaternary
Ammonium-Type Extractant N263”, Huaxue Shiji , Vol.6, No.1,
P1-7, 1984
[29] K. Kojima, J. Suzuki and T. Shida, “Manufacture of High-Purity
Quaternary Ammonium Hydroxide by Electrodialysis”, Jpn. Kokai
Tokkyo Koho JP 03 93,752 [91 93,752] (Cl. C07C211/62)
[30] T. T. Wang and W. C. Yang, “Factors Affecting the Current and the
Voltage Efficiencies of the Synthesis of Quaternary Ammonium
Hydroxides by Electrolysis-Electrodialysis”, The Chemical
Engineering Journal , in press
[31] 朱宏彬, “溶劑與陰離子(Y)之結構對一典型相轉移催化親核取
代反應BzCl+Bu4NY BzY+Bu4NCl 之反應性之效應”,
國立中央大學化工所碩士論文, 2002
[32] C. H. Bamford and C.F. Tipper, ”The Theory of Kinetics :
Comprehensive Chemical Kinetics”, vol.2, Amsterdam, Elserier
Pub. Co., New York, Chap. 4(1969-1986).
[33] J. M. Moore and R.G. Pearson, ”Kinetics and Mechanism”, 3rd,
Wiely, New York, Chap. 7(1981).
[34] O. Levenspiel, “Chemical Reaction Engineering”, 2nd , John
Wiley &Sons. Inc., New York Chap. 5 pp171-209(1972).
[35] N. S. Isaacs, “Physical Organic Chemistry”, 2nd, Wiely, New
York, Chap. 5, pp171-209(1992).
[36] C. H. Bamford and C.F. Tipper, ”The Theory of Kinetics :
Comprehensive Chemical Kinetics”, vol.2, Amsterdam, Elserier
Pub. Co., New York, Chap. 4(1969-1986).
[37] M. H. Abraham and P. L. Grellier, “Substitution at Saturated
Carbon. Part. ΧⅠⅩ. The Effect of Alcohols And Water on The
Free Energy of Solutes and on The Free Energy of Transition State
in S and S Reaction “, J. Chem. Soc. Perkin Ⅱ, 1856-63(1975).
[38] J. O’M Bockrics and A. K. N. Reddy, “Modern Electrochemistry”,
Plenum Press, New York(1977).
[39] J. M. Prausnitz, R. N. Lichtenthaler and Azevodo Edmundo
Gomes de, “Molecular Thermodynamics of Fluid-Phase
Equilibria”, 2nd, Prentic Hall, Englewood Cliffs, New Jersey,
Ch4., pp48-90(1986).
[40] C. Reichardt, “Solvents and Solvents Effect in Organic
Chemistry”, Verlagsgesell schaft mbH, Chap. 2, Chap. 3, Chap. 5,
pp4-70, pp121-281(1988).