跳到主要內容

簡易檢索 / 詳目顯示

研究生: 游騰瑞
Teng-Ruei You
論文名稱: 加勁土堤受震反應分析
Seismic Response Analysis of Reinforced Embankment
指導教授: 黃俊鴻
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 332
中文關鍵詞: 加勁土堤動態分析參數分析漸進式破壞永久位移
外文關鍵詞: reinforced embankment, dynamic analysis, parameter analysis, progressive failure, permanent displacement
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來加勁擋土結構物受到廣泛使用,具有施工快速、低造價與耐震性佳等
    優點,已逐漸取代傳統重力式擋土牆。經由多年來完工案例的驗證下,傳統加勁
    設計方法未經修正而顯得過於保守,詳細了解其力學機制與受震反應有助於使設
    計方法更為精進,因此本研究以數值方法詳細探討加勁土堤靜、動態之力學行為,
    並進行參數分析以了解影響加勁土堤受震行為之要素。
    本研究以二維有限差分法分析程式FLAC2D(Fast Lagrangian Analysis of
    Continua)建立數值分析模型,探討土壤元素組成律與分層堆疊於加勁土堤靜態
    分析時之差異,進而考慮不同加勁材料之應力應變行為,加勁材料嵌固模式與滑
    動模式對動態行為之影響,以釐清各項因素影響程度之大小。本研究以FLAC2D
    內建之Fish 語言建立自動建模之模組,可考慮不同加勁土堤參數,包含坡度、
    高度、加勁間距與長度等因素,快速建立數值分析模型進行動態分析,得到各項
    參數分析之結果,以進行數據分析與比較,進而歸納結果。動態分析時考慮4
    筆不同地震規模之加速度歷時,調整最大加速度值進行分析,探討加勁土堤受震
    過程之變形行為,以了解土堤受震之變形機制。
    傳統加勁路堤之設計方法均以極限平衡法為基礎,本研究以極限平衡分析法
    計算加勁土堤圓弧破壞模式與雙楔形破壞模式之降伏加速度,以Newmark 滑動
    塊體法計算加勁土堤之永久位移,與本研究有限差分之分析結果進行比較,最終
    將分析之永久位移建立經驗關係式,提供簡易計算之用。
    研究結果顯示,加勁材料嵌固模式與滑動模式對土堤之變形影響不大,僅影
    響加勁材料之軸力分布,動態分析過程顯示,加勁土堤之變形屬於漸進式破壞,
    其潛在破壞面隨著不同受震程度而有所不同,與極限平衡法存在很大的差異,其
    受震變形等級受到許多因素影響,為極限平衡法無法模擬的部分,突顯數值分析
    模型在加勁路堤耐震性能設計之重要性。


    It’s important to understand the deformation mechanism of reinforced
    embankment during seismic excitation. At the first, this study used FLAC2D to
    investigate the influences of filling process and constitutive relations on the results of
    pre-earthquake static analysis. Furthermore, the effects of slip conditions of the
    interface between soil and reinforced material, and the stress-strain relation of
    reinforced material are also explored. The auto-mesh program has been developed
    using Fish subroutine of FLA2D for performing the sensitivity study of different
    parameters on the dynamic results. The investigated parameters included the slope
    angle and height, the length and spacing of the reinforced material. Based on the
    dynamic analysis, the progressive deformation and failure process are clearly
    observed and recorded.
    The traditional design of reinforced embankment is based on the limit
    equilibrium method (LEM). This study used LEM to calculate the yield acceleration
    of the reinforced embankment by assuming the circular and two-wedge failure
    surfaces. The permanent deformation is then computed by Newmark sliding block
    method (NSBM). It is found that the permanent deformation calculated by FLAC2D
    is significantly larger than that based on LEM and NBSM. Therefore, a more accurate
    simplified method was established for estimating the permanent deformation of
    reinforced embankment which is based on the analyzed results from FLAC2D.

    第一章 緒論 ............................................................................................... 1 1.1 研究目的與動機............................................................................................. 1 1.2 研究內容與流程............................................................................................. 2 1.3 論文架構......................................................................................................... 4 第二章 文獻回顧 ....................................................................................... 6 2.1 前言................................................................................................................. 6 2.2 實際案例探查與性能表現............................................................................. 7 2.2.1 加勁擋土結構受震案例探查.............................................................. 7 2.2.2 加勁擋土結構長時間性能表現........................................................ 10 2.3 加勁擋土結構分析方法探討....................................................................... 18 2.3.1 極限平衡分析法概述........................................................................ 18 2.3.2 有限元素法簡介................................................................................ 27 2.4 各國準則探討............................................................................................... 27 2.5 地工合成材料的應變................................................................................... 37 2.5.1 影響加勁材特性之因素.................................................................... 37 2.5.2 Boyle 等人(1996)之試驗 ................................................................... 39 2.5.3 其他加勁材料試驗............................................................................ 44 2.6 分析法與試驗結果....................................................................................... 47 第三章 數值分析初步探討 ..................................................................... 71 3.1 FLAC 程式簡介 ............................................................................................ 71 3.1.1 土壤元素材料模式............................................................................ 71 3.1.2 加勁材料元素.................................................................................... 72 3.2 加勁土堤震前分析....................................................................................... 74 V 3.2.1 築填材料之組成律............................................................................ 75 3.2.2 震前應力分析.................................................................................... 78 3.2.3 震前沉陷量與初始軸力.................................................................... 80 3.3 加勁材料軸向力學行為............................................................................... 84 3.3.1 加勁材料軸向應力應變行為............................................................ 87 3.3.2 土堤加勁與否之差異........................................................................ 89 3.4 靜態分析....................................................................................................... 91 3.4.1 加勁材料軸力與應變........................................................................ 94 3.4.2 頂部沉陷與牆面側向變形................................................................ 98 3.4.3 最大軸力位置潛在滑動面.............................................................. 100 3.5 動態分析..................................................................................................... 102 3.5.1 阻尼與參數...................................................................................... 103 3.5.2 加勁材料軸力與應變...................................................................... 107 3.5.3 最大軸力位置與潛在滑動面.......................................................... 116 3.5.4 加速度反應...................................................................................... 121 3.5.5 牆面側向變形與牆頂沉陷.............................................................. 126 3.5.6 加勁材料拉出阻抗比...................................................................... 131 第四章 離心機試驗案例驗證 ............................................................... 136 4.1 驗證之案例................................................................................................. 136 4.1.1 土壤樣本之基本物理性質與動態特性.......................................... 137 4.1.2 剪力模數衰減曲線之影響因素...................................................... 138 4.1.3 Toyoura 砂之動態特性 .................................................................... 140 4.2 數值分析之假設......................................................................................... 142 4.2.1 加勁材料軸向應力應變行為與參數.............................................. 143 4.3 數值分析與模擬......................................................................................... 144 VI 4.4 加速度頂部沉陷與加速度之模擬結果..................................................... 146 4.5 破壞案例之驗證......................................................................................... 159 第五章 動態分析 ................................................................................... 164 5.1 前言............................................................................................................. 164 5.2 參數分析..................................................................................................... 164 5.2.1 土壤參數與加勁材料參數.............................................................. 166 5.2.2 地震動輸入...................................................................................... 168 5.2.3 分析結果記錄.................................................................................. 172 5.3 加勁土堤靜態軸力..................................................................................... 173 5.3.1 軸力值.............................................................................................. 173 5.3.2 各加勁層最大軸力位置.................................................................. 175 5.3.3 靜態軸力預測方法.......................................................................... 178 5.4 動態軸力增量............................................................................................. 183 5.4.1 動態軸力增量值.............................................................................. 183 5.4.2 修正動態軸力增量.......................................................................... 186 5.5 堤頂加速度放大反應................................................................................. 192 5.6 土堤頂部動態引致沉陷量......................................................................... 197 5.6.1 堤頂沉陷.......................................................................................... 198 5.6.2 堤頂最大沉陷.................................................................................. 202 5.6.3 堤頂沉陷最大值.............................................................................. 206 5.7 最大剪應變破壞面..................................................................................... 208 5.7.1 加勁間距之影響.............................................................................. 209 5.7.2 加勁長度之影響.............................................................................. 211 5.7.3 坡度與不同規模之地震紀錄.......................................................... 212 第六章 變形量簡易評估 ....................................................................... 216 VII 6.1 加勁土堤穩定分析..................................................................................... 216 6.2 加勁土堤動態分析..................................................................................... 218 6.2.1 擬靜態分析法................................................................................... 219 6.2.2 極限平衡法分析結果...................................................................... 221 6.2.2.1 加勁土堤靜態安全係數....................................................... 221 6.2.2.2 受水平震動之降伏加速度................................................... 228 6.3 極限平衡法與FLAC2D 之潛在破壞面差異 ............................................. 233 6.4 Newmark 永久位移計算 ............................................................................. 237 6.4.1 加速度歷時之選擇.......................................................................... 238 6.4.2 放大因子之計算.............................................................................. 239 6.4.3 永久位移之計算.............................................................................. 247 6.5 雙楔形破壞模式分析................................................................................. 253 6.5.1 力平衡與安全係數計算.................................................................. 256 6.5.2 計算結果.......................................................................................... 257 6.6 動態永久位移比較..................................................................................... 260 6.7 降伏加速度之迴歸..................................................................................... 264 6.7.1 圓弧切片法...................................................................................... 264 6.7.2 極限平衡法之雙楔型破壞模式...................................................... 267 6.7.2.1 降伏加速度之迴歸............................................................... 270 6.8 FLAC 沉陷量圖表 ...................................................................................... 273 6.8.1 驗證案例.......................................................................................... 278 6.9 本研究與其他研究結果比較..................................................................... 282 第七章 結論與建議 ............................................................................... 285 7.1 結論............................................................................................................. 285 7.2 建議............................................................................................................. 289 VIII 參考文獻 ................................................................................................. 291

    1. Adukari, G.S.N., and Parkin, A.K., “Deformation behavior of Talbingo dam”,
    International Journal for Numerical and Analytical Methods in Geomechanics,
    Vol. 6, pp. 353-382 (1982).
    2. Allen, T.M., Christopher, B.R. and Hotzl, R.D., “Performance of a 12.6 m High
    Geotextile Wall in Seattle, Washington”, Geosynthetic Retaining Walls, Wu,
    J.T.H., Editor, Balkema, Proceedings of a symposium held in Denver, Colorado,
    USA, August 1991, pp. 81-100 (1992).
    3. Allen, T.M., Bathurst, R.J., and Berg, R.R., “Global level of safety and
    performance of geosynthctic walls : An historical perspective.” Geosynthetic
    International, Vol. 9, No. 5-6, pp. 395-450 (2002).
    4. ASTM D4595, “Standard Test Method for Tensile Properties of Geotextiles by the
    Wide-Width Strip Method”, American Society for Testing and Materials, West
    Conshocken, Pennsylvania, USA.
    5. Allen T. M., Bathurst R. J., Holtz R. D., Lee W. F. and Walters D., “New method
    for prediction of loads in steel reinforced soil walls.” Journal of Geotechnical and
    Geoenviromental Engineering, Vol. 130, No. 11, pp. 1109-1120 (2004).
    6. Bathurst, R.J. and Cai, Z., “Pseudo-static seismic analysis of
    geosynthetic-reinforced segmental retaining walls”, Geosynthetics International,
    Vol.2, No.5, pp.787-830 (1995).
    7. Bathurst, R.J., Cai, Z., Alfaro, M. and Pelletier, M., “Seismic design issues for
    geosynthetic reinforced segmental retaining walls”, Mechanically Stabilized
    Backfill, Wu(ed.), pp.79-97 (1997).
    292
    8. Bathurst, R.J., Simac, M. R., “Design and performance of the facing column for
    geosynthetic reinforced segmental retaining walls”, Mechanically Stabilized
    Backfill, Wu(ed.), pp.193-208 (1997).
    9. Bathurst, R. J., Allen, T. M., and Walters, D. L. “Reinforcement loads in
    geosynthetic walls and the case for a new working stress design method.”
    Geotextiles and Geomembranes, 23(4), 287–322 (2005).
    10. Bathurst, R. J., Nernheim, A., Walters, D. L., Allen, T. M., Burgess, P., and
    Saunders, D., “Influence of reinforcement stiffness and compaction on the
    performance of four geosynthetic reinforced soil walls.” Geosynthetics
    International, 16(1), 43–59 (2009).
    11. Bathurst, R. J., Miyata, Y., Nernheim, A., and Allen, T., “Refinement of
    K-stiffness method for geosynthetic reinforced soil walls.” Geosynthetics
    International, 15(4), 269–295 (2008).
    12. Bathurst R. J., Nernheim A. and Allen T. M., “Predicted loads in steel reinforced
    soil walls using the AASHTO simplified method.” Journal of Geotechnical and
    Geoenviromental Engineering, Vol. 135, No. 2, pp. 177-184 (2009).
    13. Bell, J.R., Barrett, R.K., and Ruckman, A.C., “Geotextile Earth-Reinforced
    Retaining Wall tests: Glenwood Canyon, Colorado,” Transportation Research
    Record 916, pp. 59-69 (1983).
    14. Bonaparte, R., Holtz, R.D., and Giroud, J.P., “Soil Reinforcement Design Using
    Geotextiles and Geogrids”, Geotextile Testing and the Desing Engineer, ASTM
    STP 952, J. E. Fluet, Jr., Ed., American Society for Testing and Materials,
    Philadelphia, pp. 69-116 (1987).
    15. Bowles, J.E., “Foundation Analysis and Design”. 4ed. McGraw-Hill, Inc (1988).
    293
    16. Bergado D.T., Chai J.C. and Balasubramanism A.S., “Interaction between grid
    reinforcement and cohesive-frictional Soil”, Proceedings of the International
    Symposium on Earth Reinforcement Practice, Kyushu University, Fukuoka, Japan,
    pp. 29-34 (1992).
    17. Boyle, S.R., Gallagher, M. and Holtz, R.D., “Influence of Strain Rate, Specimen
    Length and Confinement on Measured Geotextile Properties”, Geosynthetics
    International, Vol. 3, No. 2, pp. 205-225 (1996).
    18. Boyle, S.R., “Deformation Prediction of Geosynthetic Reinforced Soil Retaining
    Walls”, Ph.D. Dissertation, Department of Civil Engineering, University of
    Washington, Seattle, Washington, USA, 391p (1995a).
    19. Boyle, S.R., “Unit Cell Tests on Reinforced Cohesionless Soils”, Proceedings of
    Geosynthetics ’95, IFAI, Vol. 3, Nashville, Tennessee, USA, February 1995, pp.
    1221-1234 (1995b).
    20. Boyle, S.R. and Holtz, R.D., “Deformation Characteristics of Geosynthetic
    Reinforced Soil ”, Proceedings of the Fifth International Conference on
    Geotextiles, Geomembranes and Related Products, Vol. 1, Singapore, September
    1994, pp. 361-364 (1994).
    21. Boyle S.R., Gallagher M. and Holtz R. D., “Influence of strain rate, specimen
    length and confinement on measured geotextile properties.” Geosynthetic
    International, Vol. 3, No. 2, pp. 205-225 (1996).
    22. Cai, Z. and Bathurst, R.J., “Seismic response analysis of geosynthetic reinforced
    soil segmental retaining walls by finite element method”, Computers and
    Geotechnics, Vol.17, No.4, pp.523-546 (1995).
    294
    23. Cai, Z. and Bathurst, R.J., “Seismic-induced permanent displacement of
    geosynthetic-reinforced segmental retaining walls”,Can.Geotech. J. Vol.33,
    pp.937-955 (1996a).
    24. Cai, Z. and Bathurst, R.J., “Deterministic sliding block methods for estimating
    seismic displacements of earth structures”, Soil Dynamics and Earthquake
    Engineering, Vol.15, pp.255-268 (1996b).
    25. Hatami, K., and Bathurst, R. J., “Development and verification of a numerical
    model for the analysis of geosynthetic reinforced soil segmental walls under
    working stress conditions.” Can. Geotech. J., 42(4), 1066–1085 (2005).
    26. Hatami, K., and Bathurst, R. J., “A numerical model for reinforced soil segmental
    walls under surcharge loading.” Journal of Geotechnical and Geoenviromental
    Engineering, 132(6), 673–684 (2006).
    27. Huang B., Bathurst R. J. and Hatami K., “Numerical study of reinforced soil
    segmental walls using three different constitutive soil models.” Journal of
    Geotechnical and Geoenviromental Engineering, Vol. 135, No. 10, pp. 1486-1498
    (2009).
    28. Howard, R. W. A., DeGeorge, J. P., and Kutter, B. L., “Dynamic centrifuge
    testing of reinforced soil walls—centrifuge data report for MSE01.” Rep. No.
    UCD/CGMDR-97/11, Center for Geotechnical Modeling (1997).
    29. Howard, R. W. A., Kutter, B. L., and Siddharthan, R., “Seismic deformation of
    reinforced soil centrifuge models.” Proc., Geotechnical Earthquake Engineering
    and Soil Dynamics Conf., ASCE, Reston, Va., 446–468 (1998).
    30. Helwany, M. B., Tasuoka, F., Tateyama, M., and Kojima, K., ”Effects of facing
    295
    rigidity on the performance of geosynthetic-reinforced soil retaining walls”, Soils
    and Foundations, Vol. 36, No. 1, pp.27-38 (1996).
    31. Huang, C. C., “Investigations of soil retaining structures damagedduring the
    Chi-Chi(Taiwan) earthquake”, Journal of the Chinese Instituteof Engineers, Vol.
    23,No. 4, pp.417-428 (2000).
    32. Huang, C. C., Chou, L.H., and Tasuoka, F., “Seismic displacements of
    geosynthetic-reinforced soil modular block walls”, Geosynthetics International,
    10, No.1, pp.2-23 (2003).
    33. Huang, C. C., and Chen, Y.H., “Seismic stability of soil retaining walls situated
    on slope”, Journal of Geotechnical and Geoenvironmental Engineering, Vol.
    130,No. 1, pp.45-57 (2004).
    34. Izawa J. and Kuwano J., “Evaluation of extent of damage to geogrid reinforced
    soil walls subjected to earthquakes.” Soils and Foundations, Vol. 51, No. 5, pp.
    945-958 (2011).
    35. Itasca Consulting Group., FLAC: Fast Lagrangian Analysis of Continua, version
    5.0, Itasca Consulting Group, Inc., Minneapolis, Minn ( 2005).
    36. Jason Wu & Nelson Chou, “Forensic Studies of Geosynthetic Reinforced
    Structure Failures”, Journal of Performance of Constructed Facilities, ASCE,
    pp.604-613 (2013).
    37. Ling, H. I., Leshchinsky, D. , and Perry, E. B., ”Seismic design and performance
    of geosynthetic-reinforced soil structures”, Geotechnique, Vol.47, No. 5,
    pp.933-952 (1997).
    38. Ling, H. I., and Leshchinsky, D., ”Effects of vertical acceleration on seismic
    design of geosynthetic-reinforce soil structures”, Geotechnique, Vol. 48, No. 3,
    pp.347-373 (1998).
    296
    39. Matasovic, N., and Yan, L., ”Newmark deformation analysis with degrading yield
    acceleration”, Geosynthetics, pp. 989-999 (1997).
    40. Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design and
    Construction Guidelines, U.S., Department of Transportation Federal Highway
    Administration(FHWA), NHI Course,No. 132042, (2001).
    41. Miyata, Y., and Bathurst, R. J., “Development of K-stiffness method for
    geosynthetic reinforced soil walls constructed with c-φ soils.” Can. Geotech. J.,
    44(12), 1391–1416 (2007a).
    42. National Concrete Masonry Association, “Segmental retaining walls-seismic
    design manual”, 1st ed, authored by Bathurst, R. J., and Bathurst, Jarrett and
    Associates, Inc (1998).
    43. National Concrete Masonry Association, “Design manual for segmental retaining
    walls”, 2nd ed, Collin, J.G. ed (1996).
    44. Nova-Roessig, L., and Sitar, N., “A review of seismic design methods for
    reinforced soil walls and slopes.” Progress Rep. Prepared for the California
    Department of Transportation, Geotechnical Rep. No. UCB/GT/95-06 (1996).
    45. Nova-Roessig, L., and Sitar, N., “Centrifuge studies of the seismic response of
    reinforced soil slopes.” Proc., Third Geotechnical Engineering and Soil Dynamics
    Conf., Vol. 1, ASCE, Reston, Va., 458–468 (1998).
    46. Nova-Roessig, L., and Sitar, N., “Centrifuge model of the seismic response of
    reinforced soil slopes.” Journal of Geotechnical and Geoenviromental
    Engineering, Vol. 132, No. 3, pp. 388-400 (2006).
    47. Newmark, N. M., ”Effects of earthquakes on dams and embankments”,
    Geotechnique, Vol. 15, pp.139-160 (1965).
    297
    48. Okuyama, Y.,Yoshida, T., Tatsuoka, F., Koseki, J., Uchimura, T., Sato, N., and
    Oie, M., “Shear banding characteristics of granular materials and particle size
    effects on the seismic stability of earth structures”, Proc. 3rd Int. Sym.
    Deformation Characteristics of Geomaterials, IS Lyon 03, Dibenedetto et al. eds.,
    Balkema, pp.607-616 (2003).
    49. Porbaha A. and Goodings D. J., “Laboratory investigation of nonuniformly
    reinforced soil-retaining structures.” Journal of Geotechnical Engineering, Vol.
    122, No. 10, pp.840-848 (1997).
    50. Porbaha A. and Goodings D. J., “Centrifuge modeling of geotextile-reinforced
    cohesive soil retaining walls.” American Society for Testing and Materials, Vol.
    20, No. 3, pp. 289-295 (1996).
    51. Sabermahani M. and Fakher A. G., “Experimental study on seismic deformation
    models of reinforced-soil walls.” Geotextiles and Geomembranes., Vol. 27 pp.
    121-136 (2009).
    52. Sakaguchi, M., “A study of the seismic behavior of geosynthetic reinforced walls
    in Japan.” Geosynthetics International, 3(1), 13–30 (1996).
    53. Siddharthan R. V., Ganeshwara V., Kutter B. L., El-Desouky M., Whitman R. B.,
    “Seismic deformation of bar mat mechanically stabilized earth walls. I: Centrifuge
    tests.” Journal of Geotechnical and Geoenviromental Engineering, Vol. 130, No.
    1, pp. 14-25 (2004).
    54. Shinoda M. and Bathurst R. J., “Lateral and axial deformation of PP, HDPE and
    PET geogrids under tensile load.” Geotextiles and Geomembranes., Vol. 22 pp.
    205-222 (2004).
    55. Tasuoka, F., Tateyama, M., Uchimura, T., and Koseki,
    J., ”Geosynthetic-reinforced soil retaining walls as important permanent
    structures”, Geosyntthetics International, pp.3-24 (1996).
    298
    56. Tasuoka, F., Tateyama, M., and Koseki, J., ”Performance of soil retaining walls
    for railway embankments”, Special issue of Soils and Foundations, pp.311-324
    (1996).
    57. University of Wisconsin-Platteville, ”Evaluation of Connection Strength” (1993).
    58. Viswanadham B. V. S. and Mahajan R. R., “Centrifuge model tests on
    geotextile-reinforced slopes.” Geosynthetic International, Vol. 14, No. 6, pp.
    365-379 (2007).
    59. Yang K. H., Zornberg J. G., Liu C. N. and Lin H. D., “Stress distribution and
    development within geosynthetic-reinforced soil slopes.” Geosynthetic
    International, Vol. 19, No. 1, pp. 62-78 (2012).
    60. Zornberg J. G., Sitar N. and Mitchell J. K., “Performance of geosynthetic
    reinforced slopes at failure.” Journal of Geotechnical and Geoenviromental
    Engineering, Vol. 124, No. 8 (1998).
    61. Zornberg J. G. and Arriaga F., “Stress distribution within geosynthetic-reinforced
    slopes.” Journal of Geotechnical and Geoenviromental Engineering, Vol. 130, No.
    1, pp. 14-25 (2003).
    62. 李咸亨,「地工織物加勁擋土牆應力分佈」,地工技術,第32期,第5-12頁
    (1990)。
    63. 李咸亨、謝宗榮,「加勁擋土牆之抗震設計方法」,地工技術,第43期,第
    11-22 頁 (1997)。
    64. 李咸亨,「神戶地震中加勁擋土牆的行為」,現代營建,第210 期,第24-29
    頁 (1997)。
    65. 李咸亨、連偉智,「加勁擋土牆之動態行為解析」,第八屆大地工程學術研
    究討論會,第886-893頁 (1999)。
    299
    66. 李維峰、黃亦敏,「加勁擋土牆動態設計與研發」,地工技術,第85期,第
    13-24頁 (2001)。
    67. 李咸亨、芮嘉航,「大變形量不織布之大型力學試驗」,碩士論文,國立台
    灣工業技術學院營建工程技術研究所,台北 (1990)。
    68. 李怡先,「地工合成材與土壤互制作用之力學性質」,碩士論文,國立台灣
    大學土木工程學研究所,台北 (1991)。
    69. 李怡先,「地工格網與土壤互制作用之研究」,博士論文,國立臺灣大學土
    木工程研究所,台北 (1998)。
    70. 周南山等人,「加勁擋土結構設計及施工手冊」,台北市土木技師公會
    (2001)。
    71. 黃景川,「921 集集地震中擋土結構之損害調查與分析」,國家地震工程研究
    中心研究報告,No. NSC89-2921-Z-319-005-05,台北 (2000)。
    72. 陳榮河,「加勁擋土牆之分析與設計」,地工技術,第25 期,第46~61 頁
    (1989)。
    73. 范嘉程、周南山(1998),「加勁擋土結構設計及施工規範準則之探討」,地
    工技術第70 期,台北 (1998)。
    74. 林上源,「應變率對地工加勁材基本性質影響之探討」,碩士論文,私立中原
    大學土木工程研究所,(2001)。
    75. 周南山,「地工合成物加勁牆分析設計之探討與評估」,地工技術第43 期,台
    北 (1993)。
    76. 周南山(1995),「加勁擋土結構之分析設計及其在公路與高鐵之應用」,地工
    新技術在公路及鐵路之應用研討會,台北 (1995)。
    77. 周南山,「加勁擋土結構在台灣的最新發展」,加勁擋土結構之最新發展研討
    300
    會,台北 (2000)。
    78. 黃景川、陳昱宏、周禮輝,「公路擋土系統在強震下之變位與補強對策」,地
    工技術第85 期,第13-24 頁,台北 (2001)。
    79. 吳嘉賓,「土石壩受震應變潛能法之整合研究」,博士論文,國立中央大學土
    木工程研究所博士,桃園 (2009)。

    QR CODE
    :::