| 研究生: |
林禹妝 Yu-Chuang Lin |
|---|---|
| 論文名稱: |
酪胺酸酵素改質幾丁聚醣在化工廢水處理程序上之應用 Enzymatic Grafting of Carboxyl Groups onto Chitosan to Confer Chitosan Property As Wastewaters Adsorbent |
| 指導教授: |
徐新興
Shin-Shing Shyu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 染料 、酚類 、幾丁聚醣 、吸附 、酪胺酸酵素 |
| 外文關鍵詞: | phenol, dye, adsorption, tyrosinase, chitosan |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本研究分別將三種酚類衍生物:3,4-dihydroxy benzoic acid (DBA) , 3,4-dihydroxyphenyl acetic acid (PA) ,以及dihydrocaffeic acid (CA)在酪胺酸酵素催化下進行接枝反應於幾丁聚醣,而後以FTIR光譜驗證接枝反應確已發生,並以Amaranth (acid red27) 計算其接枝量。以此種改質之幾丁聚醣為吸附劑,研究其在工業廢水處理上,本實驗用於討論其去除水中染料、酚類與酪胺酸酵素之效果。
幾丁聚醣原為極佳的酸性染料吸附劑,但對於鹼性染料則毫無吸附力可言。接枝carboxyl group之幾丁聚醣,則同時具有對酸性及鹼性染料之吸附能力。以酪胺酸酵素進行去酚反應時,轉化出之quinone 化合物,可以幾丁聚醣吸附移除,而水溶液中殘餘的酪胺酸酵素,則可以用carboxyl group改質之幾丁聚醣吸附去除。
為比較不同carboxyl group對於鹼性染料吸附能力之影響,將改質後之幾丁聚醣對二種鹼性染料crystal violet (CV)及Bismarck brown Y (BB)作吸附實驗,發現pH值會影響吸附量,最適pH值分別為pH 7 (CV) 及 pH9 ( BB)。實驗數據顯示改質後之幾丁聚醣對二種鹼性染料之吸附行為遵循Langmiur type,而對二種鹼性染料之最大吸附量依下列順序減少CTS-CA > CTS-PA > CTS-DBA。與羧基接枝量大小順序相同。
改質之幾丁聚醣吸附酪胺酸酵素,於低濃度酪胺酸酵素時,依循一級吸附模式;高濃度酪胺酸酵素下則遵循二級吸附模式。比較不同溫度下的吸附效果,35℃下的吸附速率較4℃大,且吸附量也較大。在相同溫度下,三種改質幾丁聚醣對酪胺酸酵素的最大吸附量依序為CTS-DBA>CTS-PA>CTS-CA。
Abstract
Phenolic compounds and dyes are commonly found in wastewaters. This study explores an enzymatic method for removal phenol and dyes from the wastewater. Three kinds of phenol derivatives: 3,4-dihydroxy benzoic acid (DBA), 3,4- dihydroxyphenyl- acetic acid (PA), hydrocaffeic acid (CA) were used individually as substrates of tyrosinase to graft onto chitosan (CTS).
FTIR analysis provided supporting evidence of phenol derivatives being grafted. The grafting conversion of these phenolic reactants on chitosan was examined by the adsorption of an anionic dye: acid red 27. Time course of enzymatic grafting reaction showed a saturated grafting extent of carboxyl groups onto chitosan. The highest content of carboxyl groups on modified chitosan beads was CTS-CA.
In this study, these modified beads were used in experiments on uptake of cationic dyes such as Crystal violet (CV) and Bismarck brown (BB). Adsorption of the cationic dyes onto modified chitosan gels is studied by batch adsorption technique at optimal pH (pH 7 for CV and pH9 for BB) under 30℃. Langmiur type adsorption was found for both dyes, and the maximum adsorption capacities were decreased with the following order CTS-CA > CTS-AA > CTS-DBA > CTS-BA.
Tyrosinase converted p-cresol to polyquinones, and polyquinones was removed by adsorbing onto chitosan beads and tyrosinase was adsorbed by those carboxyl groups modified chitosan beads. Under low concentration , tyrosinase adsorbed by modified chitosan fitted pseudo-first order kinetic model; while at high level of tyrosinase, the adsorption fitted pseudo-second order kinetic model. The maximun adsorbed capacity and adsorbed rate constant were decreased with CTS-DBA > CTS-PA > CTS-CA.
S.S. Lee, S.P. Hong, M.H. Sung, Removal and bioconversion of phenol in wastewater by a thermostable β-tyrosinase, Enzyme and Microbial Technology 19:374-377, (1996).
K. Ikehata, J.A. Nicell, Characterization of tyrosinase for the treatment of aqueous phenols, Bioresource Technology 74:191-199, (2000).
W.Q. Sun, G.F. Payne, Tyrosinase-Containing Chitosan Gels: A Combined Catalyst and Sorbent for Selection Phenol Removal, Biotechnology and Bioengineering 51:79-86, (1996).
W. Edwards, W.D. Leukes, P.D. Burton, Immobilization of polyphenol oxidase on chitosan-coated polysulphone capillary membranes for improved phenolic effluent bioremediation, Enzyme and Microbial Technology 25: 769-773, (1999).
W. Edwards, W.D. Leukes, E.D. Jacobs, R. Sanderson, P.D. Rose, S.G. Burton, A capillary membrane bioreactor using immobilized polyphenol oxidase for the removal of phenols from industrial effluents, Enzyme and Microbial Technology 24: 209-217, (1999).
A. Gemant, Polyphenol oxidase as a factor in aging, Gerontology 23: 350, (1977).
P.Y. Bouthyette, N. Eannetta, K.T. Hannigan, P. Gregory: Solanum berthaultii trichomes contain unigue polyphenoloxidase and a peroxidase. Phytochemistry 26: 2949-2954, (1987).
G.F. Payne, S.W.Q. Sohrabi, Tyosinase reaction/Chitosan adsorption for selectivelly removing phenols from aqueous mixtures. Biotechnology and Bioengineering 40:1011-1018, (1992).
E.I. Solomon, M.D. Lowery, Electronic-structure contributions to Function in bioinorganic chemistry, Science 259: 1575-1581, (1993).
D.E. Wilcox, A.G. Porras, Y.T. Hwang, K. lerch, M.E. Winkler, E.I. Solomon, Substrate-analog binding to the coupled binuclear copper active-site in tyrosinase, Journal of the American Chemical Society 107: 4015-4027, (1985).
J. Dec, J.M. Bollag, Effect of various factors on dehalogenation of chlorinated phenols and anilines during oxidative coupling, Environmental Science & Technology 29: 657-663, (1995).
Ravi Kumar MNV. A review of chitin and chitosan applications, Reactive & Functional Polymers 46: 1-27, (2000).
徐世昌,生物性高分子—「幾丁質及幾丁聚醣」之介紹與應用,化工資訊,36-45, (2001).
Q. Li, E. T. Dunn, E. W. Grandmaison and M. F.A. Goosen, Applications of Chitin and Chitosan, 3-29, (1992).
K.L.B. Chang, J. Lin, J. Lee, Advance in Chitin and Chitosan, 261-266, (1998).
糜福龍,幾丁聚醣應用於藥物及疫苗傳輸系統之設計及研究,國立中央大學化學工程研究所博士論文,1997年。
Z. Aydin, J. Akbuğa, Chitosan Beads for the Delivery of Salmon Calcitonin: Preparation and Release Characteristics, International Journal of Pharmaceutics 131: 101-103, (1996).
I. Chibata, L. B. Wingaed, Immobilized Microbial Cells, Applied Biochemistry and Bioengineering 4: 190-245, (1983).
K.D. Vorlop, J. Klein, Entrapment of Microbial Cells in Chitosan, Methods in Enzymology 135: 259-269, (1987).
張曉婷,包埋具酚類分解性的惡臭假單胞菌於多孔性幾丁聚醣顆粒之研究,成功大學化學工程研究所碩士論文,民國2001年。
林宏育,相對濕度對活性炭吸附甲基乙基酮及甲苯雙成分有機蒸汽的影響探討,長庚大學化工與材料工程系碩士論文,2001年。
R.S Juang, F.C Wu, R.L. Tseng, Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kernels, Journal of Colloid and Interface Science 227: 437-444, (2000).
Y.S. Ho, G. Mckay, Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash, Journal of Environmental Science and Health part A-toxic/hazardous substances & environmental engineering 34: 1179-1204, (1999).
李建武,蕭能,余瑞元,陳麗蓉,陳雅蕙,陳來同,袁明秀,生物化學實驗原理和方法,第七章,94-107, (1999).
The Merck Index, 12ed.
G.G. Maghami, G.A.F. Roberts, Studies on the adsorption of anionic dyes on the chitosan, Makromolekulare Chemie-macromolecular chemistry and physics 189: 2239-2243, (1988).
K. Ikehata, J.A. Nicell, Characterization of tyrosinase for the treatment of aqueous phenols, Bioresource Technology 74: 191-199, (2000).
A. Rompel, H. Fischer, D. Meiwes, K. Büldt-Karentzopoulos, A. Magrini, C. Eicken, C. Gerdemann, B. Krebs, Substrate specificity of catechol oxidase from Lycopus europaeus and characterization of the bioproducts of enzymic caffeic acid oxidation, Federation of European Biochemical Societies 445: 103-110, (1999).
K. Streffer, H. Kaatz, C.G. Bauer, A. Makower, T.Schulmeiser, F.W. Scheller, M.G. Peter, U. Wollenberger, Application of a sensitive catechol detector for determination of tyrosinase inhibitors, Analytic chimica acta 362: 81-90, (1998).
G. Kumar, P.J. Smith, G.F. Payne, Enzymatic grafting of a natural product onto chitosan to confer water solubility under basic conditions, Biotechnology and Bioengineering 63: 154-16, (1999).
J.L. Iborra, E. Cortes, A. Manjon, J. Ferragut, F. Llorca, Affinity chromatography of frog epidermins dopa-oxidase, Journal of Solid-Phase Biochemistry 1: 91-100, (1976).
E. Karada, D. Saraydin, O. Girven, Removal of some cationic dyes from aqueous solutions by acrylamide/itaconic acid hydrogels. Water Air Soil Pollution 106: 369-378, (1998).