| 研究生: |
李克辰 Ko-Chen Li |
|---|---|
| 論文名稱: |
氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響 The effect of ZnO thermal decomposition on the nanoheteroepitaxy of GaN on Si |
| 指導教授: |
賴昆佑
Kun-Yu Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 氮化鎵 、氧化鋅 、奈米異質磊晶術 、熱分解 |
| 外文關鍵詞: | GaN, ZnO, nanoheteroepitaxy, GaN on Si |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討論氧化鋅奈米柱在高溫、含氫環境下的穩定性。氧化鋅奈米柱可作為氮化鎵在矽基板上的磊晶緩衝層,能有效減緩氮化鎵與矽基板之間的晶格應力,且奈米柱可用低溫、大面積的水熱法生長而成。此外,氧化鋅奈米柱的鋅在高溫製程時會擴散至氮化鎵,產生氮化鎵的鋅摻雜,形成p型氮化鎵,我們希望以此p-side-down的LED結構,來提升量子井的發光效率。
然而,在有機金屬化學氣相的磊晶過程中,基板溫度通常超過1000 ºC,且需要含氫氣的環境,這些條件會對氧化鋅產生蝕刻的作用,影響氧化鋅的晶格結構,因此氧化鋅的穩定性對氮化鎵的品質有關鍵性的影響。本研究使用快速熱退火爐管,觀察氧化鋅在高溫、不同氫含量下(空氣、真空及氮氣)的反應,希望能藉此了解氧化鋅奈米柱在氮化鎵磊晶過程中的結構變化。
根據SEM及XRD的觀察,在空氣中的氧化鋅奈米柱的耐熱程度最低,在900 ºC時就會產生形變,且與相鄰的奈米柱接合,無法保持住本身奈米柱的型態,當溫度到達1000 ºC時,奈米柱即完全塌陷;真空環境下的氧化鋅奈米柱則是在900 ºC時產生些微的形變,但還能保持奈米柱的原始型態;氮氣環境下的氧化鋅奈米柱在1000 ºC時才開始發生形變。這樣的實驗結果可以確認氧化鋅奈米柱在高溫下的不穩定性,除了氧化鋅的熱分解,在含有氫氣的環境下,還會有氫氣蝕刻的影響,造成氧化鋅奈米柱的耐熱程度更低。
In this study, we investigated the stability of ZnO nanorods at high temperature and hydrogen environments. ZnO nanorods are employed as the buffer structure for the growth of GaN on silicon substrates via metal-organic chemical vapor deposition (MOCVD). The nanorods can be attained with a hydrothermal synthesis, which is a low-temperature and wafer-scale process. GaN grown on ZnO is inherently p-type, which is due to the diffusion of Zn ions. For LEDs, the inherent p-type GaN can benefit the internal quantum efficiency by forming the p-side-down structure, which reverses the polarization-induced field and increases carrier injection efficiency.
However, during MOCVD growth, the substrate temperature usually exceeds 1000 ºC, and a hydrogen-containing atmosphere is required, and these conditions can lead to thermal decomposition and H2 back-etching of ZnO nanorods, sacrificing the crystal qualities of GaN-on-Si. To understand the etching and decomposition process, rapid thermal annealing (RTA) with different hydrogen contents (air, vacuum, and nitrogen) was used to treat ZnO nanorods.
According to the observations with scanning electron microscopy and X-ray diffraction, it is found that the ZnO nanorods in air start to deform and decompose at 900 ºC, and completely collapse at 1000 º C. In the vacuum environment, the nanorods slightly deform at 900 ºC, but the original “rod” shape can be maintained. The ZnO nanorods are most durable in nitrogen, and the geometry is well maintained until the temperature reaches 1000 ºC. These results confirm that, in addition to thermal decomposition, ZnO nanorods suffer H2 back-etching in the presence of high-temperature hydrogen, which should be closely cared during the growth of GaN-on-Si.
[1] 網路資料:發光二極體發展歷史與半導體概念,
取自http://www.wunan.com.tw/www2/download/preview/5D91.PDF
[2] 網路資料:維基百科,發光二極體,
取自 https://zh.wikipedia.org/wiki/%E7%99%BC%E5%85%89%E4%BA%8C%E6%A5%B5%E7%AE%A1
[3] H. J. Round, “A note on carborundum,” Electrical world., Vol 49, pp.309-310, 1907.
[4] G. Destriau, “Recherches sur les scintillations des sulfures de zinc aux rayons.” Journal de Chemie Physique. Vol 33, S.pp. 587–6251936,.
[5] H.Welker, “Über neue halbleitende Verbindungen” Zeitschrift für Naturforschung A, Vol 7, Issue 11, pp.744-749, 1952.
[6] E. Weisshaar, H.Welker, “Magnetische Sperrschichten in Germanium” Zeitschrift für Naturforschung A, Vol 8, Issue 11, pp.681-686, 1953.
[7] Nick Holonyak Jr. and S.F. Bevacqua1, “Coherent (visible) light emission from Ga(As1-xPx) junctions” Appl. Phys. Lett. Vol. 1, pp. 82-83, 1962.
[8] C. J. Nuese, et al “Optimization of Electroluminescent Efficiencies for Vapor‐Grown GaAs1 − x P x Diodes” J. Electrochem., Soc. Vol 116, pp. 248-253, 1969
[9] H. Amano, et al. “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer” Appl. Phys. Lett., Vol. 48, pp.353, 1986
[10] Hiroshi Amano, et al. “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy
Electron Beam Irradiation (LEEBI)” Jpn. J. Appl. Phys., Vol 28, pp. L2112-L2114, 1989.
[11] S. Nakamura, et al, “Thermal annealing effects on p-type Mg-doped GaN films,”
Jpn. J. Appl. Phys., Vol 31, pp.139-142, 1992.
[12] Shuji Nakamura, et al, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes” Jpn.
J. Appl. Phys., Vol 35, pp. L74-L76, 1996.
[13] F. M. Steranka, J. Bhat, D. Collins, L. Cook, M. G. Craford, R. Fletcher, N.Gardner, P. Grillot, W. Goetz, M. Keuper, R. Khare, A. Kim, M. Krames, G.Harbers, M. Ludowise, P. S. Martin, M. Misra, G. Mueller, R. Mueller-Mach,S. Rudaz, Y.-C. Shen, D. Steigerwald, S. Stockman, S. Subramanya, T.Trottier, and J. J. Wierer, “High power LEDs – Technology status and market applications,” Physica Status Solidi A-Applied Research, Vol. 194, pp. 380, 2002.
[14] E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press,
Cambridge),2006.
[15] 徐瑞偉,「以奈米異質磊晶術在矽基板上成長半極性氮化銦鎵量子井」,國立中央大學,碩士論文,民國103年。
[16] 李朱育,李敏鴻,李勝偉,柯文政,段生振,陳念波,「圖解光電半導體元件」,五南圖書出版股份有限公司,2014年。
[17] 網路資料:賴芳儀、蔡芳儒、鄭柏孝、郭浩中,提升發光二極體亮度之方法(下)
取自 http://www.pida.org.tw/optolink/optolink_pdf/97037411.pdf
[18] 網路資料:LED( Light Emitting Diode ) 發光二極體
取自 http://www.mae.isu.edu.tw/upload/81201/48/news/postfile_43775.pdf
[19] 網路資料: 郭子菱,矽基 LED 量產在即,藍寶石基板價格戰醞釀開打,2012 年9 月 6 號,取自 http://blog.xuite.net/frankfang86/twblog
[20] 網路資料︰MoneyDJ 理財網,LED 藍寶石基板
取自 http://www.moneydj.com/KMDJ/Wiki/WikiHome.aspx
[21] 吳承翰,「成長於氧化鋅緩衝層之自發性P型氮化鎵」,國立中央大學,碩士論文,民國104年
[22] 網路資料:反置磊晶提高LED發光效率
取自http://www.compoundsemiconductortaiwan.net/PDF/2012/020304/CS_Features5.pdf
[23] Y. Ohba, A. Hatano, ” A study on strong memory effects for Mg doping in GaN metalorganic chemical vapor deposition” Journal of Crystal Growth., Vol 145. Pp. 214-218, 1994.
[24] Pearton S J, Norton D P and Ren F “The Promise and Perils of Wide-Bandgap Semiconductor Nanowires for Sensing, Electronic, and Photonic Applications.”
Small Vol 3, pp. 1144-1150, 2007.
[25] S. D. Hersee, X. Y. Sun, X. Wang, M. N. Fairchild, J. Liang, and J. Xu, “Nanoheteroepitaxial growth of GaN on Si nanopillar arrays”, J. Appl. Phys., Vol 97, pp. 124308 , 2005.
[26] D Zhu, D J Wallis and C J Humphreys, “Prospects of III-nitride optoelectronics
grown on Si”, Rep. Prog. Phys., Vol 76, pp. 106501, 2013.
[27] G. T. Chen, J. I. Chyi, C. H. Chan, C. H. Hou, C. C. Chen, and M. N. Chang, “Crack-free GaN grown on AlGaN∕(111)SiAlGaN∕(111)Si micropillar array fabricated by polystyrene microsphere lithography“ Appl. Phys. Lett. Vol 91, pp. 261910, 2007.
[28] J. W. Hus, C. C. Chen, M. J. Lee, H. H. Liu, J. I. Chyi, M. R. S. Huang, C. P. Liu, T. C. Wei, J. H. He and K. Y. Lai, “Bottom-Up Nano-heteroepitaxy of Wafer-Scale Semipolar
GaN on (001) Si” Adv. Mater., Vol 27, pp. 4845–4850, 2015.
[29] M. L. Reed, E. D. Readinger, Shen,Wraback, Syrkin, Usikov, V. Kovalenkov,2 and V. A. Dmitriev, ” n-InGaN/p-GaN single heterostructure light emitting diode with p-side down”, Appl. Phys. Lett., Vol 93,pp. 133505, 2008.
[30] H. Wang, Z. P. Zhang, X. N. Wang, Q. Mo, Y. Wang, J. H. Zhu, H. B. Wang, F. J. Yang, Y. Jiang, “Selective Growth of Vertical‐aligned ZnO Nanorod Arrays on Si Substrate by Catalyst‐free Thermal Evaporation”, Nanoscale Res. Lett., vol 3, pp.309, 2008.
[31] 網路資料:俊尚科技股份有限公司,物理氣相沉積 – Sputtering Deposition
取自 http://www.junsun.com.tw/index.php/zh/2012-04-12-01-17-00/2012-04-12-01-19-01/physical-vapor-deposition.html?start=1
[32] Francisco Solís-Pomar, Eduardo Martínez, Manuel F Meléndrez and Eduardo Pérez-Tijerina,” Growth of vertically aligned ZnO nanorods using textured ZnO films”, Nanoscale Res. Lett., Vol 6, pp. 524 ,2011.
[33] N. Li, “GaN on ZnO: A NEW APPROACH TO SOLID STATE LIGHTING”, Georgia Institute of
Technology, 2009 .
[34] N. Li, E.H. Park, Y. Huang, S. Wang, A. Valencia, B. Nemeth, J. Nause, and I. Ferguson,“Growth of GaN on ZnO for Solid State Lighting Applications”, Proc. of SPIE, vol 6337, pp.63370Z‐1, 2006
[35] Shih-Wei Chen, Jenn-Ming Wu,” Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method”, Acta Materialia., Vol 59, pp. 841–847, 2011.
[36] H. Ghayour, H. R. Rezaie, S. Mirdamadi, A. A. Nourbakhsh, “The effect of seed layer thickness on alignment and morphology of ZnO nanorods”, Vaccum, Vol 86, pp.101‐105, 2011.
[37] 陳建嘉,「矽基板上的氮化鎵奈米異質磊晶術」,國立中央大學,碩士論文,民國102年
[38] Q. C. Li, V. Kumar, Y. Li, H. T. Zhang, T. J. Marks, R. P. H. Chang, “Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions “ Chem. Mater., Vol 17, pp. 1001-1006, 2005.
[39] M. Grunze, W. Hirschwald, and D. Hofmann, ”Zinc OXIDE: SURFACE STRUCTURE, STABILITY, AND MECHANISMS OF SURFACE REACTIONS” J. Cryst. Growth Vol 52, pp. 241-249 1981
[40] 網路資料:維基百科,有機金屬化學氣相沉積法,2015 年 5 月 9 號 最後修訂
取自 https://zh.wikipedia.org/wiki/%E6%9C%89%E6%9C%BA%E9%87%91%E5%B1%9E%E5%8C%96%E5%AD%A6%E6%B0%94%E7%9B%B8%E6%B2%89%E7%A7%AF%E6%B3%95
[41] Kui Wu, Tongbo Wei, Haiyang Zheng, Ding Lan, Xuecheng Wei, Qiang Hu, Hongxi Lu, Junxi Wang, Yi Luo, and Jinmin Li, “Fabrication and optical characteristics of phosphor-free InGaN nanopyramid white light emitting diodes by nanospherical-lens photolithography”.
J. Appl. Phys. ,Vol 115, pp. 123101, 2014.
[42] 網路資料:李孟恩 助理教授,半導體發光元件講義,基礎科學教育改進計畫,高雄師範大學物理學系,取自https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=12&ved=0ahUKEwjp5su24NPSAhWDG5QKHWgIBxI4ChAWCBswAQ&url=http%3A%2F%2Fpromotion.ep.nctu.edu.tw%2Fteaches%2F92%2FnknuA%2Fnknu2.doc&usg=AFQjCNEwHruft53Do2DOevrq8KBAi1yGIg