| 研究生: |
陳宏維 Hong-Wei Chen |
|---|---|
| 論文名稱: |
N型氮化鎵MOS元件之製作與研究 The study and fabrication of n-type GaN MOS device |
| 指導教授: |
李清庭
Ching-Ting Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 氧化鎵 、氮化鎵 |
| 外文關鍵詞: | Ga2O3, GaN |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
論文摘要
近年來,具寬直接能隙之Ⅲ-Ⅴ族半導體如氮化鎵因具有優良之光、電特性而越來越受到重視,由於氮化鎵具備半導體材料當中鍵結最強的離子性,一般而言難以用傳統的方法進行蝕刻及氧化之製程,本篇論文主要利用光電化學(photoelectrochemistry,PEC)之技術針對N型氮化鎵表面進行氧化,並對其氧化層Ga2O3之特性進行研究,期望能製作一高品質之氧化層並達到元件製作之各項要求。第一章主要敘述研究之背景及動機,第二章中介紹以PEC方式對氮化鎵進行氧化的原理,並量測照光強度與外加偏壓大小對氧化速率的影響,而第三章中先利用X光光電子能譜(XPS)與能量散射光譜儀(EDX)對氧化層組成進行分析,確定組成後利用掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)與穿透式電子顯微鏡(TEM)對氧化鎵表面進行觀測,此外也對氧化層進行300℃,500℃,700℃,900℃不同溫度熱處理,並對熱處理後之氧化層特性作一分析比較,第四章中實際製作MOS二極體,並量測其電壓-電流與電壓-電容特性,此外也對氧化鎵中載子的傳導機制與氧化鎵/氮化鎵界面之界面態密度作一探討,第五章則對論文內容做一結論及檢討。
GaN has attracted much attention because of its application prospects in short-wavelength optoelectronics and high power/high temperature electronics. It is well known that compound semiconductor based metal-oxide-semiconductor (MOS) device is paved with difficulties, because of distinct interface properties compare to the former semiconductor Si/SiO2/metal system.In our study, we find several shortcoming of Ga2O3 and this will make the GaN MOSFET fabrication become more difficult and affect device characteristics.
參考文獻
1. Shuji Nakamura, Takashi Mukai and Masayuki Senoh, Jpn. J. Appl. Phys., Vol.30 p.1991 (1998)
2. Shuji Nakamura, Takashi Mukai and Masayuki Senoh, Appl. Phys. Lett., Vol.64, p.1687 (1994)
3. J.C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J.C. Campell, Appl. Phys. Lett., Vol.72, p.542 (1998)
4. C. Gaquiere, S. Trassert, B. Boudart, and Y. Crosnier, IEEE Microwave and Guided Wave Letters, Vol. 10, No.1 (2000)
5. R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Consantine, C. Barratt, R. F. karlicek, Jr., C. Tran, and M.churman, Appl. Phys. Lett. Vol.69, p.1119 (1996)
6. C. Youtsey, I. Adesida and G. Bulman, Appl. Phys. Lett., Vol.71
p.2151 (1997)
7. L. H. Peng, C. W. Chuang, J. K. Ho, C. N. Huang, and C. Y. Chen ,
Appl. Phys. Lett., Vol.72, p.939 (1998)
8. S. M. SZE, “SEMICONDUCTOR DEVICES Physics and Technology ” pp.481~484
9. S. M. SZE, “SEMICONDUCTOR DEVICES Physics and Technology ” p.195~p.200
10. S. M. SZE, “SEMICONDUCTOR DEVICES Physics and Technology ” p.342
11. S. J. Pearton, J. C. Zolper, R. J. Shul and F. Ren, J. Appl. Phys. Vol.86, No.1 (Applied Physics Reviews, GaN: Processing, defects, and devices) p.1
12. H. C. Casey, Jr., G. G. Fountain and R. G. Alley, B. P. Keller and
Steven P. DenBaars, Appl. Phys. Lett., Vol.68, p.1850, (1996)
13. S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, Appl. Phys. Lett., Vol.73, p.809 (1998)
14. B. Gaffey, Louis J. Guido, Senior Member, IEEE, X. W. Wang, Senior Member, IEEE, and T. P. Ma, Fellow, IEEE, IEEE Transactions on Electron Devices, Vol.48, p.458 (2001)
15. L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, and C. M. Lai, A. K. Chu, J. K. Sheu, Appl. Phys. Lett., Vol.77, p.3788 (2000)
16. Tamotsu Hashizume, Egor Alekseev, and Dimitris Pavlidisb, Karim S. Boutros and Joan Redwing, J. Appl. Phys., Vol.88, p.1983 (2000)
17. D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho, and D. H. Shin and C. H. Lee and K. S. Chung, Appl. Phys. Lett., Vol.80, p.446 (2002)
18. T. S. Lay, W. D. Liu, M. Hong, J. Kwo and J. P. Mannaerts, Electronics Letters, Vol.37, p.595 (2001)
19. T. Kozawa, T. Kachi, T. Ohwaki, Y. Taga, N. Koide, and M. Koike, J. Electrochem. Soc. (USA) Vol.143, L17 (1996)
20. J. I. Pankove, J. Electrochem. Soc: (USA) Vol.119, p.1118 (1972)
21. M. Okubo, Jpn. J. Appl. Phys. (Japan) Vol.36, L955 (1997)
22. T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, and J. Graul, V. Schwegler, C. Kirchner, and M. Kamp, M. Heuken, Appl. Phys. Lett., Vol. 76, p.3923 (2000)
23. E. H. Chen, D. T. Mclnturff, T. P. Chin, M. R. Melloch, and J. M. Woodall, Appl. Phys. Lett. Vol. 68, p.1678 (1996)
24. J. E. Borton, C. Cai and M. I. Nathan, P. Chow, J. M. Van Hove, and A. Wowchak, and H. Morkoc, Appl. Phys. Lett., Vol. 77, p.1227, (2000)
25. Dieter K. Schroder,“Semiconductor Material and Device Characterization” p.339
26. M. S. Minsky, M. White, and E. L. Hu, Appl. Phys. Lett. Vol. 68, p.1531 (1996)
27. Y. J. Lin, C. D. Tsai, Y. T. Lyu, and C. T. Lee, Appl. Phys. Lett., Vol. 77, No.5, p.687 ( 2000)
28. F. Tourtin, P. Armand, A. Ibanez, G. Tourillon, E. Philippot, Thin Solid Films Vol. 322, p.85 (1998)
29. Kensaku Yamamoto, Hiroyasu Ishikawa, Takashi Egawa, Takashi Jimbo, Masayoshi Umeno, Journal of Crystal Growth Vol. 189/190 p.575 (1998)
30. E. H. NICOLLIAN, J. R. BREWS, ”MOS (Metal Oxide Semiconductor) Physics and Technology, p.738~p.742
31. S. D. Wolter, B. P. Luther, D. L. Waltemyer, C. Önneby, and S. E. Mohney, R. J. Molnar, Appl. Phys. Lett., Vol.70, p.2156, (1997)
32. T. Rotter, R. Ferretti, D. Mistele, F. Fedler, H. Klausing, J. Stemmer, O. K. Semchinova, J. Aderhold, J. Graul, Journal of Crystal Growth Vol. 230, p.602, (2001)
33. M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, J. Appl. Phys. Vol.77, p.686, (1995)
34. Dieter K. Schroder,“Semiconductor Material and Device Characterization” p.390~391
35. Dieter K. Schroder,“Semiconductor Material and Device Characterization” p.389~390
36. S. M. SZE,“ Physics of Semiconductor Devices” chapter 7
37. A. Paskaleva, E. Atanassova, T. Dimitrova, Vacuum Vol. 58, p.470, (2000)
38. J. Y. Wu, P. W. Sae, Y. H. Wang, M. P. Houng, Solid-State Electronics Vol. 45, p.1999, (2001)
39. W. K. Choi, K. K. Han, and C. K. Choo, J. Appl. Phys., Vol.83, p.4810, (1998)
40. Dieter K. Schroder,“Semiconductor Material and Device Characterization” chapter 6
41. J. Tan, M. K. Das, J. A. Cooper, Jr. and M. R. Mellocha, Appl. Phys. Lett., Vol.70, p.2280, (1997)
42. N. S. Saks, J. Appl. Phys. Vo.74, p.3303, (1993)