跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱文昱
Wenyu Chiou
論文名稱: 桃園海岸帶地下水流特徵研究
Investigating Groundwater Flow Characteristics of the Taoyuan Coastal Zone
指導教授: 李明旭
Ming-Hsu Li
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 水文與海洋科學研究所
Graduate Instittue of Hydrological and Oceanic Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 141
中文關鍵詞: 地下水海洋地下水出流地電阻影像剖面法海岸帶地下水數值模擬
外文關鍵詞: Groundwater, Submarine Groundwater Discharge, Electrical Resistivity Imaging, Coastal zone, Groundwater Numerical Modeling
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 桃園台地區域過去因造山運動與多次海進海退,形成特有的含水礫石層上覆泥層,這類特殊的地質特徵從內陸延伸到海岸帶,甚至可能綿延至海岸線外,根據水平衡分析的結果,流往近海的地下水出流量非常可觀,暗示桃園海岸帶具有豐沛的地下水資源,近海可能有海洋地下水出流(SGD, Submarine groundwater discharge)的存在,本研究結合地下水水質資料與地電阻影像法觀測結果了解桃園新屋海岸帶的地下水鹽度時空變化,此外,我們根據取自新屋臨海工作站的岩心地層柱與臨近水文地質井資料建立水文地質模型,使用HYDROGEMCHEM4.3耦合數值模式進行二維地下水流與鹽度數值模擬,透過現地觀測資料與模擬結果的比較,探討新屋海岸帶的地下水流機制與海淡水特徵,分析與比較三種研究工具的優缺點與差異。根據本研究結果總結出以下幾點:(1)新屋海岸帶的地層存有大量的淡水出流量,淡水流可延伸至海岸帶外數百米後從海床下流出,說明此區存有海岸帶地下水出流(SGD, Submarine groundwater discharge)。(2)海岸帶地下水鹽度因潮汐現象而有週期性變化,此外,不同深度地層的地下水有不同的鹽度。(3)海灘區域與近岸陸地區域不同的地下水鹽度與水位之關係,推測與淡水的來源不同有關。(4)表層泥的存在使海岸地下水出流具有低流速、低鹽度與延伸範圍廣的特徵,未來建議可於桃園海岸帶區域進行SGD相關的地球化學與海岸生態研究,理解海岸帶的生地化與演化特徵,同時,也期望此篇研究之結果可作為水利單位評估桃園海岸帶地下水資源與永續利用的參考依據之一。


    In the Taoyuan Plateau region, the unique aquifer with gravel overlain by a thin mud layer, which extends from the inland to the coastal zone and may even continue beyond the coastline was formed due to tectonic movements and repeated marine transgressions and regressions in the past. According to the results of the water balance analysis in the Taoyuan City, the significant outflow rate of groundwater towards the nearby sea suggests that it has abundant of groundwater resources in the coastal zone of the Taoyuan, and there may be Submarine Groundwater Discharge (SGD) occurring near the coastline. This study tried to understand spatiotemporal variation of salinity of groundwater in the coastal zone of Xinwu, Taoyuan combined the data of quality of groundwater and the result obtained by electrical resistivity tomography (ERT) method. Furthermore, we established the hydrogeological model based on the core stratigraphic column and hydrogeological well data obtained from the Xinwu Coastal TaiCOAST work station, conducting a HYDROGEOCHEM 4.3 two-dimensional variably saturated groundwater flow numerical simulation. By comparing between measured and simulated data, we explored the characteristics of underground seawater and freshwater and mechanisms of groundwater flow in the coastal zone of Xinwu, discussing the advantages, disadvantages, and differences of three study methods. The following conclusions based on the results can be listed: First, there was a significant amount of freshwater in the stratigraphy of the Xinwu coastal area, and the freshwater flow could extend hundreds of meters into the coastal zone before flowing out through the seabed, indicating the presence of submarine groundwater discharge (SGD) in this area. Second, the salinity of groundwater in coastal zone had periodic variation due to the tidal effect. In addition, different salinity of groundwater was measured in the groundwater at different depths. Third, we inferred that the difference relationship between groundwater salinity and water level between the beach and the nearshore area result from distinct sources of inland fresh groundwater. Third, the existence of a thin mud layer contributes to the characteristics of lower velocity, lower salinity and wider extended range of coastal groundwater outflow. It is recommended that future studies on SGD-related geochemistry and coastal ecology can be conducted in the nearshore area of Taoyuan to confirm the reality and impact of SGD. Additionally, we hope that the results of this study can serve as one of the reference for water resources management departments to evaluate the groundwater resource and sustainable use of groundwater in the Taoyuan coastal area.

    摘要 I Abstract III 致謝 V 目錄 V 圖目錄 VII 表目錄 X 第一章、緒論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 研究流程 3 第二章、文獻回顧 5 2-1 海洋地下水出流 5 2-2 海岸帶地下水水文調查與應用方法 11 2-3 海岸帶地下海淡水交互作用 15 第三章、研究區域 19 3-1 地理位置 19 3-2 桃園台地地質歷史與背景 22 3-3 桃園台地水文地質特性 24 3-4 桃園台地水文概況 29 3-5 中央大學TaiCOAST新屋臨海工作站 32 第四章、研究方法 35 4-1 地下水質觀測 35 4-2 地電阻影像法 38 4-2-1 地電阻影像法之方法原理 38 4-2-2 地電阻影像法之儀器布設 40 4-3-3 觀測電阻率與鹽度換算 43 4-3 變飽和地下水流與傳輸數值模擬 46 4-3-1 HGC模式介紹 46 4-3-2 水流模擬 50 4-3-3 化學傳輸模擬 55 4-3-4 模擬剖面位置與網格設定 58 4-3-5 水文地質概念模型 59 4-3-6 模擬參數與地質參數設置 62 第五章、結果與討論 65 5-1 海岸帶地下水質連續與單點觀測 65 5-1-1 海灘區域地下水井觀測結果與分析 65 5-1-2 工作站內地下水井觀測結果與分析 69 5-2 地電阻影像法觀測 73 5-2-1 時序地電阻剖面 73 5-2-2 換算後時序鹽度剖面 75 5-3 變飽和地下水流數值模擬 80 5-3-1 地下水流數值模擬鹽度剖面 80 5-3-2 鹽度深度與時序變化討論與分析 82 5-3-3 地下水流數值模擬流場與流速結果討論與分析 86 5-3-4 有無泥層案例比較與討論 90 5-4 定量鹽度與導電度分析 97 5-4-1 海灘區域定量鹽度分析 97 5-4-2 桃園台地區域地下水井定量導電度分析 99 5-5 地下水質觀測、地電阻影像法觀測與數值模擬結果討論與分析 102 5-5-1 研究方法優缺點與平均鹽度比較與討論 102 5-5-2 鹽度空間分佈比較與討論 104 5-6 新屋海岸帶地下水流機制分析 107 第六章、結論與建議 110 6-1 結論 110 6-2 建議 112 參考文獻 114 附錄 121 附錄一、連續地電阻剖面圖 121 附錄二、電阻率換算鹽度剖面圖 122 附錄三、地下水流數值模擬流場與鹽度剖面圖(有泥層) 123 附錄四、地下水流數值模擬流場與鹽度剖面圖(無泥層) 126

    1. Amir, N., Kafri, U., Herut, B., Shalev, E., 2013. Numerical Simulation of Submarine Groundwater Flow in the Coastal Aquifer at the Palmahim Area, the Mediterranean Coast of Israel. Water Resources Management, 27, 4005–4020.
    2. Archie, G. E., 1942. The electrical resistivity log as an aid in determining some reservoir characteristics, T. AIME, 146, 54–67.
    3. Basu, A.R., S.B. Jacobson, R.J. Poreda, C.B. Dowling, and P.K. Aggarwal., 2001. Large groundwater strontium flux to the oceans from the Bengal Basin and themarine strontium isotope record. Science 293: 1470–1473.
    4. Beck, M., Reckhardt, A., Amelsberg, J., Bartholomä, A., Brumsack, H., Cypionka, H., 2017. The drivers of biogeochemistry in beach ecosystems: A cross‐shore transect from the dunes to the low water line. Marine Chemistry, 190, 35–50.
    5. Burnett, W.C., Bokuniewicz, H., Huettel, M., Moore, W.S., Taniguchi, M., 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry,66, 3–33.
    6. Burnett, W.C., G. Wattayakorn, M. Taniguchi, H. Dulaiova, P. Sojisuporn, S. Rungsupa, and T. Ishitobi., 2007. Groundwater derived nutrient inputs to the Upper Gulf of Thailand. Continental Shelf Research,27, 176–190.
    7. Charbonnier, C., Anschutz, P., Poirier, D., Bujan, S., & Lecroart, P., 2013. Aerobic respiration in a high‐energy sandy beach. Marine Chemistry, 155, 10–21.
    8. Charette, M. A., & Sholkovitz, E. R., 2002. Oxidative precipitation of groundwater‐derived ferrous iron in the subterranean estuary of a coastal bay. Geophysical Research Letters, 29(10), 1444.
    9. Chen, C.-T.A., Zhang, J., Peng, T.R., Kandasamy, S., Wang, D., & Lin, Y.-J., 2018. Submarine groundwater discharge around Taiwan. Acta Oceanological Sinica, 37, 18-22.
    10. Chen, Y. G and Liu T. K., 1991. Radiocarbon dates of river terraces along the lower Tahanchi, north Taiwan: their tectonic and geomorphic implications. Proceedings of the Geological Society of China, 34: 337-347.
    11. Culkin, F., Smith, N. D., 1980. Determination of the Concentration of Potassium Chloride Solution Having the Same Electrical Conductivity, at 15℃and Infinite Frequency, as Standard Seawater of Salinity 35.000‰ (Chlorinity 19.37394‰). Journal of Oceanic Engineering, Vol. Oe-5, No. 1.
    12. Dibaj, M., Javadi A.A., Akrami, M., Ke, K.Y., 2021. Coupled three-dimensional modelling of groundwater-surface water interactions for management of seawater intrusion in Pingtung Plain, Taiwan. Journal of Hydrology: Regional Studies, 36,100850.
    13. DUONG, Q.T., 2020. Numerical modeling of fresh-seawater interaction induced by tidal variation, a case study at NCU TaiCOAST site in Taoyuan, Taiwan. National Central University.
    14. Eliot A. Atekwana, Goabaone J. Ramatlapeng, Hendratta N. Ali, Isaac K. Njilah, Gustave R.N. Ndondo, 2022. Tide-salinity patterns reveal seawater-freshwater mixing behavior at a river mouth and tidal creeks in a tropical mangrove estuary. Journal of African Earth Sciences, Volume 196. 104684,
    15. Glover, P. W. J., 2016. Archie’s law–a reappraisal, Solid Earth, 7, 1157– 1169.
    16. Gustafson, C., Key, Kerry., Evans, R. L.,2019. Aquifer systems extending far offshore on the U.S. Atlantic margin. Scientific Reports,9:8709.
    17. Hays, R. L., & Ullman, W. J., 2007a. Direct determination of total and fresh groundwater discharge and nutrient loads from a sandy beachface at low tide (Cape Henlopen, Delaware). Limnology and Oceanography, 52(1), 240–247.
    18. Hays, R. L., & Ullman, W. J., 2007b. Dissolved nutrient fluxes through a sandy estuarine beachface (Cape Henlopen, Delaware, USA): Contributions from fresh groundwater discharge, seawater recycling, and diagenesis. Estuaries and Coasts, 30(4), 710–724.
    19. Henry, H. R. 1964. Effects of dispersion on salt encroachment in coastal aquifers. Sea Water in Coastal Aquifers, U.S. Geol. Surv. Supply Pap., 1613-C, C71-C84.
    20. Huizer, S., Karaoulis, M. C., Oude Essink, G. H. P., and Bierkens, M. F. P. 2017, Monitoring and simulation of salinity changes in response to tide and storm surges in a sandy coastal aquifer system, Water Resour. Res., 53, 6487– 6509.
    21. Jarraya-Horriche, F., Benabdallah, S. & Ayadi, M. 2020. Groundwater monitoring for assessing artificial recharge in the Mediterranean coastal aquifer of Korba (Northeastern Tunisia). Environ Monit Assess 192, 442.
    22. Jiang, Shan & Ibánhez, J. Severino & Wu, Ying & Zhang, Jing. 2021. Geochemical tracers in submarine groundwater discharge research: Practice and challenges from a view of climate changes. Environmental Reviews. 29. 242–259.
    23. Knee, K. L., Crook, E. D., Hench, J. L., Leichter J. J., Paytan, A.,2015. Assessment of Submarine Groundwater Discharge (SGD) as a Source of Dissolved Radium and Nutrients to Moorea (French Polynesia) Coastal Waters. Estuaries and Coasts, 39, 1651–1668.
    24. Lewis, E. L., & Perkin, R. G., 1978. Salinity: Its Definition and Calculation. Journal of Geophysical Research, Vol. 83, No. C1.
    25. Lin, I.-T., Wang, C.-H., Lin, S., & Chen, Y.-G., 2011. Groundwater -seawater interactions off the coast of southern Taiwan: evidence from environmental isotopes. Journal of Asian Earth Sciences, 41, 250-262.
    26. Lin, I.-T., Wang, C.-H., You, C.-F., Lin, S., Huang, K.-F., & Chen, Y.-G., 2010. Deep submarine groundwater discharge indicated by tracers of oxygen, strontium isotopes and barium content in the Pingtung coastal zone, southern Taiwan. Marine Chemistry, 122, 51-58.
    27. Loke, M. H., 2016. Tutorial: 2-D and 3-D electrical imaging surveys.
    28. Lovrinović, Ivan, Alessandro Bergamasco, Veljko Srzić, Chiara Cavallina, Danko Holjević, Sandra Donnici, Joško Erceg, Luca Zaggia, and Luigi Tosi. 2021. Groundwater Monitoring Systems to Understand Sea Water Intrusion Dynamics in the Mediterranean: The Neretva Valley and the Southern Venice Coastal Aquifers Case Studies. Water 13, no. 4: 561.
    29. Lu, C., Chen, Y., Zhang, C., Luo, J., 2013. Steady-state freshwater–seawater mixing zone in stratified coastal aquifers. Journal of Hydrology. 505,24-34.
    30. Lu, C., Werner, A.D., 2013. Timescales of seawater intrusion and retreat. Advance in Water Resources. 59, 39–51.
    31. Luijendijk, E., Gleeson, T., Moosdorf, N., 2020. Fresh groundwater discharge insignificant for the world’s oceans but important for coastal ecosystems. Nature Communications. 11(1), 1260.
    32. Mamalakis, A., Kaleris, V., 2019. Estimation of seawater retreat timescales in homogeneous and confined coastal aquifers based on dimensional analysis. Hydrological Sciences Journal. 11,190-209.
    33. McAllister, S. M., Barnett, J. M., Heiss, J. W., Findlay, A. J., MacDonald, D. J., Dow, C. L., et al., 2015. Dynamic hydrologic and biogeochemical processes drive microbially enhanced iron and sulfur cycling within the intertidal mixing zone of a beach aquifer. Limnology and Oceanography, 60(1), 329–345.
    34. Micallef, A., Person, M., Haroon, A., Weymer, B. A., Jegen, M., Schwalenberg, K., Faghih, Z., Duan, S., Cohen, D., Mountjoy, J. J., Woelz, S., Gable, C. W., Averes, T., Tiwari, A. K., 2020. 3D characterisation and quantification of an offshore freshened groundwater system in the Canterbury Bight. Nature Communications,11:1372.
    35. Mo, Y., Jin, G., Zhang, C., Xu, J., Tang, H, Shen, C., Scheuermann, A., Li, L., 2021. Combined effect of inland groundwater input and tides on flow and salinization in the coastal reservoir and adjacent aquifer. Journal of Hydrology. 600, Article 126575.
    36. Morgan, L.K., Werner, A.D., Patterson, A.E., 2018. A conceptual study of offshore fresh groundwater behavior in the Perth Basin (Australia): Modern salinity trends in a prehistoric context. Journal of Hydrology: Regional Studies, 19,318-334.
    37. Robinson, C., Gibbes, B., and Li, L. 2006. Driving mechanisms for groundwater flow and salt transport in a subterranean estuary. Geophysical Research Letters. 33 (3), L03402.
    38. Taniguchi, M., Burnett, W. C., Cable, J. E., & Turner, J. V., 2002. Investigations of submarine groundwater discharge. Hydrology process,16, 2115-2129.
    39. Telford, W. M., Geldart, L. P., & Sheriff, R. E., 1990. Applied geophysics 2nd edition. Cambridge University Press.
    40. Wals, Jorian & Westra, Jorren. 2015. Overexploitation of Coastal Aquifers. 10.13140/RG.2.1.2677.5523.
    41. Werner, A.D., Bakker, M., Post, V.E.A., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C.T., Barry, D.A., 2013. Seawater intrusion processes, investigation, and management: Recent advances and future challenges. Advance in Water Resources. 51, 3–26.
    42. Winsauer, W. O., Shearin, Jr. H. M., Masson, P. H., Williams, M., 1952. Resistivity of Brine Saturated Sands in relation to Pore Geometry. American Association of Petroleum Geologists Bulletin, Vol. 36, No. 2, 253- 277.
    43. Yeh, G. T., C. H. Tsai, S. J. Jan, C. W. Kuo, S. H. Lai, W. J. Kuo,, and M. H. Li. 2018. HYDROGEOCHEM 4.2: A Coupled Model of Fluid Flow, Thermal Transport, and HYDROGEOCHEMical Transport with Gaseous Diffusion through Saturated-Unsaturated Media - Version 4.2 (A Two-Dimensional Model). Theoretical Basis and Numerical Approximation. Technical Report. National Central University, Zhongli, Taoyuan 32001, Taiwan, 2018.
    44. Yu, X. Q., Liu, J.N., Chen, X.G., Huang, D.K., Yu, Tao, Peng, T., Du, J.Z., 2022. Submarine groundwater-derived inorganic and organic nutrients vs. mariculture discharge and river contributions in a typical mariculture bay. Journal of Hydrology, Vol:613.
    45. Yu, X., Xin, P., Lu, C., 2019. Seawater intrusion and retreat in tidally-affected unconfined aquifers: Laboratory experiments and numerical simulations. Advance in Water Resources. 132.
    46. Yu, X., Xin, Pei., Shen, C., Li, L., 2021. Effects of Multi-constituent Tides on a Subterranean Estuary with Fixed-Head Inland Boundary. Freshwater Science. 8, Article 599041.
    47. 林啟文、張育仁、吳沛臻,2014, 桃園[臺灣地質圖幅及說明書1/50,000]第二版 經濟部中央地質調查所。
    48. 桃園市政府水務局,2018,106年度桃園市市管河川區域建設概況統計應用分析報告。
    49. 桃園市政府水務局,2020,109年度桃園市智慧地下水管理推動計畫。
    50. 陳于高、劉聰桂、王源,1990,大漢溪下游一埋沒谷之碳十四定年與沉積環境,地質,10(2),147-156 。
    51. 陳鎮東、林毅杰、王冰潔、鍾玉嘉、杜悅元及葉顯修,2007。蘭嶼地下水入海之初探,台電工程月刊,頁85-91。
    52. 塗明寬、陳文政,1990,台灣地質圖說明書,圖幅第七號,中壢,經濟部中央地質調查所,53頁。
    53. 經濟部水利署,2009,桃園市地面地下水聯合管理整合模式評估與建構(2/2)。
    54. 經濟部水利署北區水資源局,2006,利用桃園地區埤塘輔助民生及工業用水之可行性評估。
    55. 經濟部水利署北區水資源局,2010,石門水庫供水區整體水源利用規劃。
    56. 鄧屬予、劉聰桂、陳于高、劉平妹、李錫堤、劉桓吉、彭志雄,民國93年,大漢溪襲奪對台北盆地的影響,師大地理研究報告。
    57. 羅偉誠、李哲瑋,2021,海水入侵回顧與調查分析,土木水利,第四十八卷,第六期。

    QR CODE
    :::