跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳柏壽
Po-shou Wu
論文名稱: 元素釋放法在非均質材料之應用
Application of Element Free Method on Inhomogeneous Materials
指導教授: 盛若磐
Jopan Sheng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 89
中文關鍵詞: 元素釋放法無網格法關聯條件拉氏乘子
外文關鍵詞: element free, meshless, connectivity
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 由於元素釋放法可以不受關聯條件的限制,以適用區域的節點資料配合MLS內插觀念推導而出的形狀函數與近似位移函數,不具有Kronecker delta的性質。因此,在界面上施加Lagrange multipliers來滿足不同材料界面的位移(displacements)與曳力(tractions)連續條件,以確保界面上的連續性。
    對界面附近節點資料的處理,本文引入簡易的節點選取修正方法,並配合無網格的特性,在界面附近區域任意增加或移動節點,來改善求解的精度。因此,當位移梯度(應變場)越過不同材料界面時,元素釋放法能夠解出具高階連續的變化場,使得位移梯度能滿足跳躍(jump)現象,故在處理非均質材料的問題時,元素釋放法可容易履行應力與應變場的組構定律(constitutive laws)。



    Since the EF method was not restricted by connectivity, the shape functions and approximate displacement functions, which deduced from the nodal data within the adapted area and the MLS concept, had no characteristics of Kronecker delta. To ensure the continuing conditions on the interfaces, the Lagrangian multipliers were enforced on the interfaces such that the displacements and the tractions between interfaces of materials were fulfilled.
    A straightforward modification to the EF method was introduced in this research that enabled the EF method to solve problems involving material discontinuities. Therefore, as the displacement gradients crossing the interfaces of materials, the high-order continuous variation field could be obtained with the EF method such that the jump of displacement gradients could be simulated. EF method satisfied the constitutive laws of stress and strain in dealing with the problems of inhomogeneous materials.

    第一章 緒論----------------------------------------------------1 1.1前言----------------------------------------------------1 1.2研究動機與目的------------------------------------------3 1.3論文內容------------------------------------------------4 第二章 文獻回顧------------------------------------------------6 2.1移動式最小平方法(Moving Least-Squares Interpolant)------6 2.2元素釋放法的發展過程------------------------------------7 2.2.1擴散元素法(Diffuse Element Method, DEM)---------------7 2.2.2元素釋放法(Element Free Method, EFM)------------------7 2.2.3元素釋放法之邊界處理----------------------------------8 2.3非均質材料分析的發展------------------------------------9 2.4 數值積分----------------------------------------------11 第三章 元素釋放法分析非均質材料之基本理論---------------------14 3.1控制方程式---------------------------------------------14 3.2移動式最小平方內插法-----------------------------------16 3.2.1形狀函數之推導---------------------------------------18 3.2.2加權函數(Weight function)之選擇----------------------21 3.2.3一致性(Consistency)的檢驗----------------------------25 3.3形狀函數(Shape function)之性質-------------------------26 3.4節點選取之原則-----------------------------------------27 3.5非均質材料之修正---------------------------------------28 3.5.1非均質材料節點選取之修正-----------------------------29 3.5.2非均質材料形狀函數之修正-----------------------------32 第四章 非均質材料之變分推導與程式分析流程---------------------36 4.1修正變分原理(modified variational principle)-----------36 4.1.1最小勢能原理(principle of minimum potential energy)--37 4.1.2修正變分的運算---------------------------------------38 4.2 Galerkin離散(Discretization)處理----------------------41 4.2.1無擴增勁度矩陣之離散處理-----------------------------41 4.2.2擴增勁度矩陣之離散處理-------------------------------44 4.2.3勁度矩陣K與力矩陣F之完全展開-------------------------49 4.3程式流程-----------------------------------------------55 4.3.1特徵長度c與影響圓dmI之流程---------------------------55 4.3.2組立勁度矩陣之流程-----------------------------------57 4.3.3引入邊界條件之流程-----------------------------------58 第五章 數值算例-----------------------------------------------60 5.1誤差的評估---------------------------------------------60 5.2非均質梁單軸拉伸變形分析-------------------------------61 5.3偏心拉桿問題-------------------------------------------68 5.4圍束矩形板拉伸變形分析---------------------------------75 5.5受靜水張力之無限域圍束問題-----------------------------80 第六章 結論與建議---------------------------------------------84 6.1結論---------------------------------------------------84 6.2建議---------------------------------------------------86 參考文獻------------------------------------------------------87

    [1]. Reddy, J. N., An Introduction to Finite Element Method, McGraw-Hill, Singapore, (1993).
    [2]. Logan, Daryl. L., A First Course in the Finite Element Method, PWS, Boston, (1993).
    [3]. Shepard, D., “A Tow-dimensional Interpolation Function for Irregularly Spaced Points,” Proceedings A. C. M. National Conference, pp. 517-524 (1968).
    [4]. Nayroles, B., G. Touzot and P. Villon, “Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Element,”Computational Mechanics, Vol. 10, pp. 307-318 (1992).
    [5]. Belytschko, T., Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, “Meshless Methods: An Overview and Recent Developments,” Computer Methods in Applied Mechanics and Engineering, Vol. 139, pp. 3-47 (1996).
    [6]. Belytschko, T., Y. Y. Lu and L. Gu, “Element-Free Galerkin Method,” International Journal for Numerical Methods in Engineering, Vol. 37, pp. 229-256 (1994).
    [7]. Lu., Y. Y., T. Belytschko and L. Gu, “A New Implementation of the Element-Free Galerkin Method,” Computer Methods in Applied Mechanics and Engineering, Vol. 113, pp. 397-414 (1994).
    [8]. Krysl, P. and T. Belytschko, “Element-Free Galerkin Method: Convergence of the Continuous and Discontinuous Shape Functions,” Computer Methods in Applied Mechanics and Engineering, Vol. 148, 257-277 (1997).
    [9]. Krongauz, Y. and T. Belytschko, “Enforcement of Essential Boundary Conditions in Meshless Approximations Using Finite Element,” Computer Methods in Applied Mechanics and Engineering, Vol. 131, pp. 133-145 (1996).
    [10]. Mukherjee, Y. X. and S. Mukherjee, “On Boundary Conditions in the Element-Free Galerkin Method,” Computational Mechanics, Vol. 19, pp. 264-270 (1997).
    [11]. Mackinnon, R. J. and G. F. Carey, “Treatment of Material Discontinuities in Finite Element Computations,” International Journal for Numerical Method in Engineering, Vol. 24, pp. 397-417 (1987).
    [12]. Cordes, L. and B. Moran, “Treament of Material Discontinuity in the Element-Free Galerkin Method,” Computer Methods in Applied Mechanics and Engineering, Vol. 139, pp. 75-89 (1996).
    [13]. Chu, Y. A. and B. Moran, “A Computational Model for Nucleation of Solid-Solid Phase Transformations,”Modelling Simulation Materials Science Engineering, Vol. 3, pp. 455-471 (1995).
    [14]. Krongauz, Y. and T. Belytschko, “EFG Approximation with Discontinuous Derivatives,” International Journal for Numerical Methods in Engineering, Vol. 41, pp. 1215-1233 (1998).
    [15]. Chung, H. J. and T. Belytschko, “An Error Estimate in the EFG Method,” Computational Mechanics, Vol. 21, pp. 91-100 (1998).
    [16]. Dolbow, J. and T. Belytschko, “Numerical Integration of the Galerkin Weak Form in Meshfree methods,” Computational Mechanics, Vol. 23, pp. 219-230 (1999).
    [17]. Teodorico, G. T., Fatigue Crack Propagation Modeling Using the Element-Free Galerkin Method, EVANSTON, Illinois (1994).
    [18]. Nemat-Nasser, S. and M. Hori, “Micromechanics: Overall Properties of Heterogeneous Materials,” North-Holland, Amsterdam (1993).
    [19]. 錢偉長,「廣義變分原理」,亞東書局 (1988)。
    [20]. 錢偉長,「變分法與有限元素法」,亞東書局 (1989)。
    [21]. 張福范,「複合材料層間應力」,高等教育出版社,中國大陸 (1986)。
    [22]. 朱伯芳,「有限單元法原理與應用」,中國水利水電出版社,中國大陸(1998)第二版。
    [23]. 吳振瑞,「元素釋放法之邊界處理」,碩士論文,國立中央大學土木工程研究所,中壢 (1999)。

    QR CODE
    :::