| 研究生: |
王金山 Jin-Shan Wang |
|---|---|
| 論文名稱: |
共振柱試驗之土壤動力性質 Soil Dynamic Properties of the Resonant Column Test |
| 指導教授: |
黃俊鴻
Jing-Hung Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 152 |
| 中文關鍵詞: | 共振柱試驗 、動態性質 、剪力模數 、阻尼比 |
| 外文關鍵詞: | Resonant column test, Dynamic property, Shear modulus, Damping ratio |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用共振柱試驗儀對渥太華標準砂(C-109)、台北捷運北投機場粉土質土壤、雲林麥寮水力回填砂、越南峴港砂及台中火力發電廠之水力回填煤灰進行共振柱排水試驗,探討平均有效圍壓、相對密度(孔隙比)及剪應變振幅對上述土壤動態性質之影響,建立各土壤之最大剪力模數與孔隙比、圍壓之經驗關係,以及正規化動態性質曲線。可供地盤受震反應分析中選取土壤動態參數之用。
本研究採用美國GCTS公司製造之Stokoe式固定-自由型共振柱試驗系統進行試驗。首先針對儀器不具飽和土壤之功能及剪應變量測系統之缺陷進行改良,改良後共振柱試驗儀之功能已能符合一般試驗之要求,經標準土樣之對比及重複試驗結果,顯示此部共振儀所測試的土壤動力性質試驗結果,頗為良好。之後,針對不同有效圍壓、相對密度(孔隙比)及剪應變振幅之情況,進行上述各種土壤之動態性質試驗,探討各種土壤之動態性質與其相關影響因素。
研究結果顯示,各種土壤之剪力模數隨著有效圍壓及相對密度增加而有增加的趨勢,但隨著剪應變振幅的增加呈現顯著非線性的減小趨勢;阻尼比隨著有效圍壓之增加而有遞減的趨勢,但隨著剪應變振幅的增加而呈現非線性的增加;相對密度(孔隙比)對阻尼比之影響則不明顯。
The dynamic shear modulus and the damping properties of soil for ground response analysis are influenced by numerous factors. In this research, shear modulus and damping ratio of several soils, including the Ottawa standard sand C-109, Taipei basin silt, YunLin Mai-Liao sand, Vietnam Danang sand and coal ash were investigated by a resonant column apparatus. Reconstituted samples with various initial void ratios were subjected to different mean effective confining pressure and shear strain amplitudes to investigate their effects on the dynamic properties.
Stokoe type fixed-free resonant column device was assembled, calibrated and modified so that reconstituted saturated specimens could be tested at various confining pressure and shearing strain amplitude. The results computed from the resonant column tests of standard soil samples and from Hardin and Richart (1963) were in good agreement, confirming that the assembled resonant column system were operating properly.
The relationship of maximum shear modulus, effective confining pressure and void ratio was established based on the resonant column test results. And the normalized curves of dynamic properties were also established. These results can be helpful in the seismic ground response analysis.
It could be concluded from this study that in certain conditions, shear modulus pronouncedly increases with effective confining pressure and relative density, decreases with shearing strain amplitude. The damping ratio decreases with effective confining pressure and increases with shearing strain amplitude. Effect of void ratio on damping ratio is negligible.
1.Drnevich, V.P., Hardin, B.O., and Shippy, D.J., “Modulus and Damping of Soils by the Resonant-Column Method,” Dynamic Geotechnical Testing, ASTM, STP 654, American Society for Testing and Materials, pp. 91-125 (1978).
2.Hall, J.R., and Richart, F.E. Jr., “Dissipation of Elastic Wave Energy in Granular Soils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SM6, pp. 27〜56 (1963).
3.Hardin, B.O. and Richart F.E. Jr., “Elastic Wave Velocities in Granular Soils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SM1, pp. 33〜65 (1963).
4.Hardin, B.O., “The Nature of Damping in Sands”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 91, No. SM1, pp. 63-97 (1965).
5.Hardin, B.O., and Black W.L., “Vibration Modulus of Normally Consolidated Clay,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM2, pp. 353-369 (1968).
6.Hardin, B.O., and Black W.L., “Closure to Vibration Modulus of Normally Consolidated Clay,” Journal of the Soil Mechanics and Foundations Division,ASCE, Vol. 95, No. SM6, pp. 1531-1537 (1969).
7.Hardin, B.O., and Drnevich V. P., “Shear Modulus and Damping in Soils: Measurement and Parameter Effects,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM6, pp. 603-624 (1972a).
8.Hardin, B.O. and Drenvich, V.P., “Shear Modulus and Damping in Soils: Design Equations and Curves”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM7, pp. 667-692 (1972b).
9.Ishihara, K., Soils Behaviour in Earthquake Geotechnics, Clarendon press, Oxford (1996).
10.Iwasaki, T., and Tatsuoka, F., “Effects of Grain Size and Grading on Dynamic Shear Moduli of Sands,” Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, Vol. 17, No. 3, pp.19-35 (1977).
11.Kokusho, T., “Cyclic Triaxial Test of Dynamic Soil Properties for Wide Strain Range,” Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, Vol. 20, No. 2, pp. 45-60 (1980).
12.Lodde, P.F., “Dynamic Response of San Francisco Bay Mud,” M.S. Thesis, University of Texas at Austin, Texas (1982).
13.Richart, F.E., Hall, J.R., and Woods R.D., Vibrations of Soils and Foundations, Prentice-Hall, New York (1970).
14.Seed, H.B., and Idriss I.M., “Shear Moduli and Damping Factor for Dynamic Response Analysis,” Report No. EERC 70-10, Earthquake Engineering Research Center, Univ. of California, Berkeley, California (1970).
15.Seed, H.B., Wong, R.T., Idriss, I.M., and Tokimatsu, K., “Moduli and Damping Factors for Dynamic Analysis of Cohesionless Soils,” Journal of Geotechnical Engineering, ASCE, Vol. 112, No. GT11, pp. 1016〜1032 (1986).
16.Silver, M.L., and Seed, H.B., “Deformation Characteritistics of Sands Under Cyclic Loading,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp. 1081〜1098 (1971).
17.Skoglund, G.R., Marcuson, W.F.,Ⅲ and Cunny, R.W., “Evaluation of Resonant Column Dynamic Testing Devices,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT11, pp. 1147-1158 (1976).
18.Sun, J.I., Golesorkhi, R., and Seed., H.B., “Dynamic Moduli and Damping Ratios for Cohesive Soils,” Report No. EERC 88-15, Earthquake Engineering Research Center, Univ. of California, Berkeley, California (1988).
19.Tatsuoka, F., Iwasaki, T., and Takagi, Y., “Hysteretic Damping of Sands Under Cyclic Loading and Its Relation to Shear Modulus,” Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, Vol. 18, No. 2, pp. 25-40 (1978).
20.吳偉特,「土壤動力特性在大地工程之應用」,地工技術雜誌,第二期,第82〜96頁 (1983)。
21.吳偉特,「土壤動力學與大地工程」,地工技術雜誌,第九期,第5〜19頁 (1985)。
22.陳堯中、李志剛、黎萬圭,「蘭陽平原砂土之剪力模數與阻尼比」,中國土木水利工程學刊,第四卷,第四期,57~66頁(1992)。
23.簡連貴、葉國樑、胡淵南,「細料含量對抽砂回填土壤動態特性之影響」,中國土木水利工程學刊,第七卷,第四期,第409~420頁(1995)。
24.宋勻文,「台北盆地北投地區基隆河黏土之動態性質」,碩士論文,國立中央大學土木工程研究所,中壢 (1998)。
25.林資凱,「水力回填煤灰之動態性質」,碩士論文,國立中央大學土木工程研究所,中壢 (2001)。
26.林育正,「垂直/扭轉共振柱法應用於量測土壤動態特性之研究」,碩士論文,國立成功大學土木工程研究所,台南 (1993)。
27.徐瑞旻,「共振柱試驗程式視窗化之研究」,碩士論文,國立成功大學土木工程研究所,台南 (2002)。
28.林中平,「黏土含量對福隆砂動態剪力模數與阻尼比之影響」,碩士論文,國立臺灣大學土木工程研究所,台北 (1983)。
29.莊睦雄,「土壤阻尼性質與頻率之關係及對地盤反應之影響」,博士論文,國立臺灣大學土木工程研究所,台北 (1998)。