| 研究生: |
楊祐炘 young you |
|---|---|
| 論文名稱: |
超輕鎂鋰合金機械性質研究 Mechanical Properties of Super Light Magnesium-Lithium Alloy |
| 指導教授: |
李雄
shyong Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 鎂鋰合金 、壓延 、晶粒細化 |
| 外文關鍵詞: | Rolling, Grain refining, Magnesium-Lithium alloy |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的探討超輕鎂鋰合金之顯微組織與機械性質。鎂鋰合金其密度約為1.46g/cm3,又以往之研究結果顯示、鎂鋰合金的強度不是很突出,為了提高Mg-Li合金的強度,添加Sc和Be元素進入Mg-Li合金中。形成LAZ1110、LAZ1110+Be、LAZ1110+Sc及LAZ1110+Be&Sc四種合金。
再利用不同的製程來提升機械性質,如固溶強化與冷加工強化;另一方面配合熱機處理,嘗試獲得微細之晶粒的鎂鋰合金材料,進而達到超塑性。由實驗可以發現到,當鎂鋰合金經過擠製+軋延後,擠製材在軋延90%後其最高強度可達200MPa左右;另一製程經擠製+固溶+軋延後,因為固溶強化與加工強化效果疊加,使得在軋延90%後最高強度可達246Mpa左右,最後,擠製+固溶+軋延時效後,材料於室溫時效下20~40hrs時會有尖峰時效產生,最大抗拉強度約253MPa。
顯微組織方面,由實驗結果可以發現到,四種合金經過固溶處理後皆為單一β相,經過軋延後晶粒被拉長呈現長條狀的晶粒,而隨著軋延率的上升α相也隨著析出。四種合金經過擠製+固溶+軋延後之試片,施以50、100、150、200、250℃×30mins退火處理後,其晶粒隨著溫度上升而增大,但是溫度達250℃時可以觀察到均勻的靜態再結晶之晶粒,尤其是軋延率30%、60%之試片,其晶粒均小於10μm,適合用於超塑性之試驗。當鎂鋰合金置於室溫下,α相的析出會造成強度的下降而有過時效的效果。
This research discusses the microstructures and mechanical properties of a series of super light magnesium-lithium alloys. The density of the Mg-Li alloy is approximately 1.46g/cm3. Previous researches indicate that Mg-Li alloys lack of strength, therefore we wish to increase its strength by adding Sc and Be into the alloy, creating four alloys,LAZ1110, LAZ1110+Be, LAZ1110+Sc, LAZ1110+ Be &Sc,respectively.
And we also use different processes to enhance the mechanical properties, such as solid solution treatment and cold work strengthening. On the other hand, we use thermo mechanical treatment to obtain a refined grain size and attain superplasticity. Experimental results indicate that when the Mg-Li alloy is extruded and rolled, the as-extruded material with 90% rolling reduction can obtain a maximum tensile strength about 200Mpa. Another process is extrusion plus solid solution and then cold rolling. Due to the superimposition effect of solid solution strengthening and cold work strengthening, the material after 90% rolling reduction can obtain a maximum strength of 246Mpa. The last process, the material is extruded, solid solution treated and cold rolled before aged. The material aged under room temperature after 20~40hrs will have peakaging with tensile strength of 253Mpa.
In microstructures, experimental results show that all four alloys possess a single β-phase after solid solution treatment. After rolling the grains are elongated and α-phase will precipitate with increasing rolling percentage. The four alloys’ specimens after extrusion, solid solution and cold rolling were annealed at 50、100、150、200、250℃, respectively, for 30min. Their grain size increases with increasing annealing temperature. When annealing temperature reaches 250℃, uniformed static recrystalled grains can be observed, especially in specimens with 30% and 60% rolling reduction whose grain size is less than 10μm which is suitable for superplasticity tests. When Mg-Li alloys are placed under room temperature α-phase will precipitate resulting in a decrease in strength and overaging.
1. 楊榮川, ”鎂及其合金” ,機械工程手冊3-金屬材料篇, 2002年1月, pp.6-33~42.
2. I.J. Polmear, Mater. Sci. Technol. 10(1994) 1-16.
3. F. Czewinski, A. Zielinska-Lipiec, P.J. Oinet, J. Overbecke, Acta Mater. 49(2001) 1225-1235.
4. K. Saitoh, Mater. Jpn. 38(1999) 321-324.
5. 張津、章宗和,“鎂合金及應用”,化學工業出版社(2006)。
6. H. Takuda, T. Yoshii and N. Hatta, Journal of Materials Processing Technology 89-90(1999) 135-140.
7. H. Takuda, H. Fujimoto and N. Hatta, Journal of Materials Processing Technology 80-81 (1998) 513-516.
8. 王建義, “超輕量鎂合金開發”, 工業材料雜誌(184期) , 91年4月, pp.132-136.
9. M. Furukawa , Z. Horita, M. Nemoto, R. Z. Valiev, and T. G. Langdon, Acta Mater.,44, 1996, pp.4619-4629.
10. T. Mukai, K. Ishikawa and K. Higashi, Mater. Sci. Eng. A204, 1995, pp.12-18.
11. T. G. Langdon, Key Eng. Mater. , 97-98, 1994, pp.109-124.
12. ASM Speciality Handbook, ASM International, (1999)
13. Norsk Hydro Databank, Norsk Hydro Research Center Porsgrunn, 1996.
14. Cahn RW, Haasen P, Kramer EJ(ed). Material Science and Technology A Comprehensive TREATMENT in Matucha KH(ed), Weinheim, VCH, 1996.
15. Jona F, Marcus P M. J Phys Condens Matter, 2003, 15, 7727.
16. R. W. Cahn, P. Haasen and E. J. Kramer, Materials Science and Technology, 8(1996) pp.131.
17. 莊錦川, “具備輕量化潛力的擠型鎂合金”, 鎂合金產業專欄,2001年12月, pp.134.
18. 郭子強, “熱處理對AZ91D鎂合金顯微組織與電化學性質影響之研究”, 國立成功大學, 碩士論文, 民國93年。
19. ASM Handbook, 10 Edition, Volume 2, 1990, pp.455.
20. T. B. Massalski, ASM INTERNATIONAL, Materials Park, OH, 1990, pp.1487.
21. 張永耀,“金屬熔銲學”,徐氏基金會,台北,1976,第134-170頁。
22. 蔡幸甫,“鎂合金產業技術及市場發展趨勢專題調查”,工研院產業經濟與資訊服務中心科技專案成果,2001。
23. C. H. Caceres, C. J. Davidson, J. R. Griffiths and C. L. Newton, Materials Science and Engineering A325(2002), pp.344-355.
24. C. Shaw and H. Jones, Materials Science and Engineering A226-228(1997), pp. 856~860.
25. ASM, Metals Handbook 9th Edition, Vol. 6, 1985, pp.425-434.
26. 賴耿陽,“非鐵金屬材料”,復漢出版社,新竹,1998,第174-191頁。
27. ASM, Metals Handbook 8th Edition, Vol. 8, 1976, pp.314-319.
28. B. Smola, I. Stul´ıkov´a, V. Oˇcen´aˇsek, J. Pelcov´a and V. Neubert, Materials Science and Engineering A 462 (2007), pp.370–374.
29. 林欣滿, “添加鋁對鎂鋰合金特性影響之研究”, 逢甲大學, 碩士論文, 民國93年。
30. H. Proffit. AMS Handbook , Vol. 2, pp.798
31. 戴光勇,“鎂合金表面處理技術(上) ”,材料與社會,Vol.24,1998,
pp.57.
32. D.S.Tawil, In the Proceedings of the Conference of Magnesium Technology, 1986, pp.66.
33. 林文樹、梁銘儉、劉曉嶺、翁世樂、王文樑、黃登淵、王良泉、蔡幸甫等著,“塑性加工學”,三民書局,pp.349-356。
34. R. M. Treco, AIME Regional Conference on Reactive Metals, (1956), pp. 136.
35. P. Gordon , Trans. AIME, 203 1043 (1955).
36. J. C. Li, Appl. J. Phys., 33 2958 (1962).
37. J. F. Humphreys, in Materials Science and Technology, ed. By R. W. Chan, P. Haasen and E. J. Kramer, Vol.15(1991), pp.371, VCH.
38. A. Bussiba, A. Ben Artzy, A. Shtechman, S. Ifergan and M. Kupiec, Materials Science and Engineering A, 302A(2001), pp.56.
39. G. Neite, K. Kubota, K. Higashi, and F. Hemann, Materials Science and Technology, Vol. 8 VCH (1996), pp.113.
40. J. A. Chapman, D. V. Wilson: J. Inst. Metals, 91 (1962-63), pp.35.
41. P. B. Berbon, N. K. Tsenev, R. Z. Valie, M. Furukawa, Z. Horita, M. Nemoto and T. G. Langond, Metall. and Mater. Trans. A, 29A(1998), 2237.
42. M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, Scripta Materialia, 36(1997), 681.
43. Roberto B. Figueiredo, Terence G. Langdon, Mater. Sci. Eng. A, 430(2006), pp.151-156.
44. Kojima Y, Inoue M, Tanno O (1990) J Japan Inst Materials 54(3):354
45. Higashi K, Wolfenstine J (1991) Mater Letter 10:329–332
46. O. Sivakesavam and Y.V.R.K. Prasad, Materials Science and Engineering A323 (2002)270-277.
47. S. Dong, T. Imai, S.W. Lim, N. Kanetake and N. Saito, J. Materials Science (2007) 42:5296-5298
48. M. Furui, S. D. Wu, S. X. Li, P. J. Li, Acta Materialia 55 (2007), pp.1083-1091.
49. A.Alamo and A.D.Banchik, “Precipitation Phenomean in the Mg-31 at%Li-1%Al Alloy”.
50. Guang Sheng Song, “Some new characteristics of the strengthening phase in β-phase magnesium-lithium alloys containing and beryllium ”.
51. Jian-Yih Wang, “Room Temperature Aging Characteristic of MgLiAlZn Alloy”.
52. Jian-Yih Wang, “Mechanical properties of room temperature rolled MgLiAlZn Alloy”.
53. 王長寧, “冷軋對LAZ1110合金機械性質的影響之研究”, 東華大學, 碩士論文, 民國97年。