跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳守淵
Shou-Yuan Chen
論文名稱: 季節樣式需求商品之最佳補貨時點與EOQ策略
Optimal Replenishment Timing and EOQ Policy for Product with Season Pattern Demand
指導教授: 葉英傑
Yingchien Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理研究所
Graduate Institute of Industrial Management
畢業學年度: 94
語文別: 中文
論文頁數: 50
中文關鍵詞: 季節樣式需求缺貨EOQ
外文關鍵詞: season pattern demand, EOQ of stock-out
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討單一零售商與單一產品所建構的產銷系統。產品符合季節樣式需求(season pattern demand),再補貨量的時間會橫跨多個季節區段,因此必須面對「何時訂購」與「訂購多少數量」兩個問題點。本研究發展一時間、價格及負指數結合的確定型需求模型,藉由數學軟體Mathematica 5.0進行模擬分析,與參數敏感度分析,討論各參數對於總利潤及訂購政策所造成的影響。之後利用缺貨EOQ檢驗研究結果,比較各項成本因素,尋找最適當的推導架構,本研究更進一步提出修正後EOQ公式,簡化本研究複雜計算過程,求得零售商最佳補貨時點與最佳訂購數量。


    In this paper, we discuss a system for manufacturer-retailer channel by single retailer and single production. Because the production follows a seasonal pattern demand, the replenishment intervals will cross many season zones. We must face the problem of (i) how many season intervals should replenishment (ii) how many restock should order. This paper developed a deterministic inventory model in which time, price and negative exponential are combined. Our analysis and simulation by Mathematica 5.0, and we use sensitive analysis to compare the affect of parameters for total profit and order policy. We check the results of experiment by EOQ of stock-out, and compare all kinds of cost to try searching the best structure. Further, the paper developed a modified EOQ model to find the best replenishment time and order quantity, and simplify complicated calculate process simultaneously.

    目錄 論文提要 I 致謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的與範圍 2 1.3研究架構 2 第二章 文獻探討 5 2.1存貨需求函數 5 2.1.1時間相關之需求型態 6 2.1.2價格相關之需求型態 6 2.1.3本研究需求型態之比較 7 2.2 經濟訂購量 7 2.3 相關文獻與本研究的比較 9 第三章 季節樣式需求模型 11 3.1 前言 11 3.2 基本符號及假設 12 3.3模型推導 14 3.4 模型分析 17 第四章 數值分析 19 4.1案例參數設定 19 4.2案例分析 20 4.2.1 本研究模型分析 20 4.2.2 You模型分析 22 4.2.3 兩模型之比較 23 4.2.4 本模型參數敏感度分析 25 4.2.4.1價格 的敏感度分析 26 4.2.4.2各參數的敏感度分析 27 4.3 EOQ公式分析 28 4.3.1 缺貨EOQ分析 29 4.3.2 修正缺貨EOQ公式 30 第五章 結論與未來發展 33 5.1結論 33 5.2未來發展 34 參考文獻 35 附錄 40

    英文部分
    You, P. S. 2005. Optimal replenishment policy for product with season pattern
    demand, Operations Research Letters, Vol.33, 90-96.
    Benkherouf, L. 1995. On an inventory model with deteriorating items and
    decreasing time-varying demand and shortages, European Journal of operational
    Research,Vol.86,293-299.
    Wee, H.M., W.T. Wang. 1999.A variable production scheduling policy for
    deteriorating items with time-varying demand, Computer & Operations
    Research,Vol.26,237-254.
    Hariga, H., S.W. Shinn .1997.Retailer’s pricing and lot sizing policy for
    exponentially deteriorating products under the condition of permissible delay in
    payments, Computers & Operations Research, Vol.24,No.6,539-547.
    Abad, P.L. 2001. Optimal price and order size for a reseller under partial
    backordering, Computers & Operations Research, Vol.28, 53-65.
    Shinn, S.W., H. Hwang. 2003. Optimal pricing and ordering policies for retailers
    under order-size-dependent delay in payments, Computers & Operations Research,
    Vol.30,35-50.
    Dave, U., L.K. Patel. 1981. ( ) policy inventory model for deteriorating items
    with time-proportional demand, Journal of the Operational Research Society,
    Vol.40,137-142.
    Papachristos, S., K. Skouri. 2000. An optimal replenishment policy for
    deteriorating items with time-varying demand and partial-exponential
    type-backlogging, Operations Research Letters, Vol.27, 175-184.
    Goyal, S.K., B.C. Giri. 2003. The production-inventory problem of a product
    with time varying demand, production and deterioration rates, European Journal of
    Operational Research, Vol.147,549-557.
    Balkhi, Z.T., L. Benkherouf. 2004. On an inventory model for deteriorating items
    with stock dependent and time-varying demand rates, Computers & Operations
    Research, Vol.31,223-240.
    Cohen, M.A. 1977. Joint pricing and ordering policy for exponentially decaying
    inventory with know demand, Naval Research Logistics Quarterly,
    Vol.24,No.1,257-268.
    Ghare, P.M., G..F. Schrader. 1963. A model for an exponentially decaying
    inventory, Journal of Industrial Engineering, Vol.14, No.5, 238-243.
    Wee, H.M., S.T. Law. 1999. Economic production lot size for deteriorating items
    taking account of the time-value of money, Computer & Operations Research,
    Vol.26, 545-558.
    Abad, P. L. 2003. Optimal pricing and lot-sizing under conditions of perishability,
    finite production and partial backordering and lost sale, European Journal of
    Operational Research, Vol.144, 677-685.
    Papachristos, S., K. Skouri. 2003. A inventory model with deteriorating items,
    quantity discount, pricing and time-dependent partial backlogging, International
    Journal of Production Economics, Vol.83, 247-256.
    Hariga, M. 1997. Optimal inventory policies for perishable items with
    time-dependent demand, International Journal of Production Economics, Vol.50,
    35-41.
    Wee, H.M. 1999. Deteriorating inventory model with quantity discount, pricing and
    partial backlogging, International Journal of Production Economics, Vol.59,
    511-518.
    Covert, R.P., G..C. Philip. 1973. An EOQ model for items with Weibull
    distribution deteriorating, AIIE Transactions, Vol.5, 323-326.
    Philip, G..C. 1974. A generalized EOQ model for items with Weibull distribution,
    AIIE Transactions, Vol.6, 159-162.
    Tadikamalla, P.R. 1978. An EOQ inventory model for items with Gamma
    distribution, AIIE Transactions, Vol.9, 108-112.
    Gowami, A., K.S. Chaudhuri. 1991. An EOQ model for deteriorating items with
    shortages and linear trend in demand, Journal of the Operational Research Society,
    Vol.42, 1105-1110.
    Charkrabarty, T., B.C. Giri., K.S. Chaudhuri. 1998. An EOQ model for items
    with weibull distribution deterioration, shortages and trended demand : an extension
    of philip’s model, Computers & Operations Research, Vol.25, No.7, 649-657.
    Chen, J.M., C.S. Lin. 2002. An optimal replenishment model for inventory items
    with normally distributed deterioration, Production Planning & Control, Vol.11,
    No.5, 464-473.
    Klein, C.M., J.A. Ventura,, B.M. Maloney. 1990. Linear Relationships for
    Constrained Multiple-item Inventory Systems, Journal of Mathematics Applied in
    Business & Industry, Vol.6, 329-339.
    Schonberger, R. J. 1982. Japanese Manufacturing Techniques: Nine Hidden
    Lessons in Simplicity. The Free Press, New York.
    Porteus, E. 1985. Investing in Reduced Setups in the EOQ Model, Mgmt Sci,
    Vol.31, 998-1010.
    Nasri,F., J.F. Affisco., M.J. Paknejad. 1990. Setup Cost Reduction in an
    Inventory Model with Finite Range Stochastic Lead Times, International Journal of
    Production Research, Vol.28, 199-212.
    Porteus, E. 1990. Stochastic Inventory Theory, in Handbooks in Operations
    Research and Management Science : Stochastic Models, Vol.2, D. Heyman and M.
    Sobel(Eds.), Elsevier Science, B. V, Amsterdam.
    Chao, H. 1992. The EOQ model with stochastic demand and discounting, European
    Journal of Operational Research, Vol.59, 434-443.
    Maloney, B.M. 1987. The Single Period Multi-Product Inventory System With
    Limited Capacity, Master’s Thesis, University of Missouri-Columbia.
    Guder, F., J.L. Zydiak. 1999. Ordering Policies for Multi-item Inventory
    Systems Subject to Multiple Resource Constraints, Computers & Operations
    Research, Vol.26, 583-597.
    中文部分
    楊坤福,2000,考慮存貨下零售商對季節性商品的最佳清倉價格,國立中央大
    學工業管理研究所碩士論文。
    林妍吟 2003,存貨理論在醫務管理上的應用-以管灌飲食為例,國防大學國防
    管理學院,國防決策科學研究所碩士論文。
    陳書瑋2004,允許短缺情況下損耗性商品最佳補貨區間與定價,國立中央大學
    工業管理研究所碩士論文。
    郭崑謨1977,存貨管理學,華泰圖書文物公司,台北

    QR CODE
    :::