| 研究生: |
許俊昇 Jyun-Sheng Syu |
|---|---|
| 論文名稱: |
高功率LED固晶技術之研究 Study of die bond for high-power LEDs |
| 指導教授: |
孫慶成
Ching-Cherng Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 固晶接合 、高功率LED 、封裝 、金錫合金 |
| 外文關鍵詞: | eutectic, package, LED, high-power LED, Die bonding |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,進行三種不同固晶封裝方式,分別對不同製程下之晶片接合表現進行分析,並且利用實驗,發展出具有穩定性與一致性之金錫合金製程技術,配合X-ray分析與推力測試,對於三種不同固晶接合方式,進行機械強度之評比。
接著,提昇熱阻系統量測之穩定性與準確度,並對於不同固晶方式之LED進行熱阻量測分析,區分三種固晶方式之熱阻值優劣,最後,以熱循環測試LED,藉此進行不同固晶方式下,產品之可靠度分析,文末,以上述方式,驗證並討論出對於高功率白光LED最優異之封裝固晶技術。
In this thesis, we study three different kinds of die bonding process and analyze their bonding strength. By experimentation, we develop a eutectic bonding process which is not only stable but also identical. Besides, we implement the LED assembly analysis by x-ray inspection and die shearing test.
Furthermore, we enhance the stabilization and accuracy of the thermal resistance measurement system, also, measure the thermal resistance of these three die bonding process and rank them. Finally, we tested LED reliability by thermal cycle. Through the comparison between the foregoing methods, we get the best die bonding technique for high power white-light LED.
1. N. Holonyak, Jr., and S. F. Bevaqua, “Coherent(visible) Light Emission From Ga(As1-xPx) Junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
2. S. Nakamura and G. Fasol, The Blue Laser Diode: GaN based light emitters and lasers (Spinger, 1997).
3. Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925, Dec. 7, (1999).
4. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
5. 孫慶成,LED的效率極限與照明光學設計的極致,2009 LED固態照明研討會,中華民國九十八年。
6. 林明德、戴光佑,“照明光源與LED發展趨勢,”工業材料雜誌 266, 080-081 (2009)。
7. J. Y. Tsao, Eds. Light Emitting Diodes for General Illumination (Washington, DC: Optoelectronics Industry Association, 2002).
8. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron. 8, 310-320 (2002).
9. A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of mulitichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148-155 (2001).
10. T. F. McNulty et al., “UV reflector and UV-based Light Source Having Reduced UV Radiation Leakage Incorporating the Same,” United States Patnet, Us 6686676, (2004).
11. Stelur et al., “Phosphor Blends for Generating White Light from Near-UV/Blue Light-Emitting Devices,” United States Patent, US 6685852 B2, (2004).
12. 李巡天、林志浩, “白光LED用耐UV透明封裝材料技術,” 工業材料雜誌 257, 139-140 (2008)。
13. 鄭景太, “高功率LED熱管理技術與量測,” 工業材料雜誌 256, 180-181 (2008)。
14. E. F. Schubert, Light-Emitting Diodes 2nd ed. (Cambridge University Press, Cambridge, 2006).
15. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274-1278 (2005).
83
16. Alan Mills, “Lighting: the progress & promise of LEDs,” III-Vs Rev. 17, 39-41 (2004).
17. Department of Defense, Test Method Standard-833E. (Defense Supply Center Columbus, 1997).
18. Kelvin Ho, Reflow Profile-Solder Paste with 96.5Sn 3.0Ag 0.5Cu Alloy. (Indium Corporation of America, 2000).
19. CREE, Inc., http://www.cree.com.
20. Philips Lumileds Lighting Company, http://www.philipslumileds.com.
21. Rafael C. Jordan, Jorg Bauer, and H. Oppermann, “Optimized heat transfer and homogeneous color converting for Ultra High Brightness LED Package,” Proc. SPIE 6198, 1-4 (2006).
22. H. Baker, ASM Handbook Vol. 3 Alloy Phase Diagrams, ed. (ASM International, 1992).
23. CREE, Inc., EZ700 LED Data Sheet, http://www.cree.com/products/led_docs.asp.
24. B. Huang, J. Chen, Z. Qiao, C. Liu, Y. P. Yao, X. Gao, and B. Bo, “Preparation and Property Study of Gold-Tin Alloys for Packaging of High Power Semiconductor Lasers,” Proc. SPIE 6824, 68241E-4 (2007).
25. N. Narendran, and Y. Gu, “Life of LED-Based White Light Sources,” IEEE/OSA J. Display Technol. 1, 167 (2005).
26. J. Z. Hu, L. Q. Yang, W. J. Hwang, and M. W. Shin, “Thermal and mechanical analysis of delamination in GaN-based light-emitting diode packages,” J. Crystal Growth 288, 157 (2006).
27. D. A. Jeannotte, L. S. Goldmann, R. T. Howard, R. R. Tummula, and E. J. Rymaszewski, Eds. Microelectronics Packing Handbook. (Van Nostrand Reinhold, New York, 1989).
28. D. Suhir, “Thermally induced IC package cracking,” IEEE Trans. Comp., Hybrids, Manufact. Technol. 13, 940–945 (1990).
29. B. S. Siegal, “Measuring Thermal Resistance Is the Key to a Cool Semiconductor,” Electronics 51, 121-126 (1978).
30. T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Optics Express 15, 6670-6671 (2007).
31. Siegfried Luger, “Thermal Management White LED Challenges LED lighting Control System,” LED professional Magazine 04, 15-17 (2007).
32. S. Todoroki, M. Sawai, and K. Aiki, “Temperature distribution along the striped active region in high-power GaAlAs visible lasers,” Appl. Phys. 58, 1124-1128 (1985).
33. H. I. Abdelkader, H. H. Hausien, and J. D. Martin, “Temperature rise and thermal
84
rise-time measurements of a semiconductor laser diode,” Rev. Sci. Instrum. 63 2004-2007 (1992).
34. S. Murata and H. Nakada, “Adding a heat bypass improves the thermal characteristics of a 50μm spaced 8-beam laser diode array.” Appl. Phys. 72, 2514-2516 (1992).
35. P. W. Epperlein and G. L. Bona, “Influence of the vertical structure on the mirror facet temperatures of visible GaInP quantum well lasers,” Appl. Phys. Lett. 61, 3074-3076 (1993).
36. D. C. Hall, L. Goldberg, and D. Mehuys, “Technlque for lateral temperature profiling in optoelectronic devices using a photoluminescence microprobe,” Appl. Phys. Lett. 61, 384-386 (1992).
37. Y. Gu and N. Narendran, “A Non-contact Method for Determining Junction Temperature of Phosphor-Converted White LEDs,” Proc. SPIE 5187, 107-114 (2004).
38. P. W. Epperlein, in Proceedings of 17th International Symposium of Gallium Arsenide and Related Compounds, IOP Conference Series, 112, 633 (IOP, London, 1990).
39. Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. 85, 2163-2165 (2004).
40. H. Y. Chou and T. H. Yang, “Dependence of Emission Spectra of LEDs upon Junction Temperature and Driving current,” J. Light & Vis. Env. 32, 134-136 (2008).
41. JEDEC Standard, Integrated Circuit Thermal Test Method Environmental Conditions-Natural Convection (Still Air) JESD51-2A, (cELECTRONIC INDUSTRIES ALLIANCE, 1995).
42. Department of Defense, Test Method Standard Electronic and Electrical Component Parts-202G. (Defense Supply Center Columbus, 1997).
43. JEDEC Standard, Steady State Temperature Humidity Bias Life Test A101-B, (cELECTRONIC INDUSTRIES ALLIANCE, 1997).
44. Jeffrey Singer, Scott Mangum, and John Lundberg, “Testing high brightness LEDs relative to application environment,” Proc. SPIE 6337, 63371C-1-63371C-8 (2006).