跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許哲睿
Che-Jui Hsu
論文名稱: 基於腦室體積與認知評估量表的阿茲海默症診斷研究
Research on Alzheimer’s Disease Diagnosis Based on Ventricular Volume and Cognitive Assessment Scales
指導教授: 洪盟凱
Meng-Kai Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 40
中文關鍵詞: 阿茲海默症腦室體積認知評估量表深度學習
外文關鍵詞: Alzheimer's Disease, Ventricular Volume, Cognitive Assessment, Deep Learning
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人口老化,阿茲海默症成為最常見的失智症類型,嚴重影響患者生活品質。
    本研究旨在探討結合腦室體積與認知評估量表的診斷方法,以期在阿茲海默症的診斷
    中取得優異表現。首先對3D磁振造影(MRI)影像進行資料預處理,計算每張切片中
    的腦室面積,最終透過切片堆疊的方式加總成腦室體積。接著,將腦室體積及認知評
    估量表數據輸入深度學習中的全連接層神經網絡,區分認知正常對照組(CN)、輕度認
    知障礙患者(MCI)和阿茲海默症患者(AD)。結果顯示,三元分類準確率為0.87,認
    知正常與輕度認知障礙分類準確率為0.95,輕度認知障礙與阿茲海默症分類準確率為
    0.84,認知正常與阿茲海默症分類準確率為0.99。研究結果表明,腦室體積擴大與認知
    功能下降具有相關性,為阿茲海默症的早期診斷和進展監測提供了新的思路。然而,
    本研究在區分輕度認知障礙與阿茲海默症方面仍有進步空間,未來可增加與阿茲海默
    症高度相關的特徵,以改進診斷方法的準確性。總結來說,本研究提出的綜合診斷方
    法在提高阿茲海默症診斷準確性方面具有潛力,為未來相關研究和臨床應用提供了重
    要參考。


    With the aging population, Alzheimer’s disease has become the most common type of de
    mentia, severely affecting the quality of life of patients. This study aims to explore a diagnostic
    method that combines ventricular volume and cognitive assessment scales to achieve superior
    performance in diagnosing Alzheimer’s disease. First, we preprocessed the data from 3D mag
    netic resonance imaging (MRI) to calculate the ventricular area in each slice, and then summed
    these areas through slice stacking to obtain the total ventricular volume. Next, we input the
    ventricular volume and cognitive assessment scale data into a fully connected layer neural net
    work in deep learning to distinguish between cognitively normal controls (CN), mild cognitive
    impairment patients (MCI), and Alzheimer’s disease patients (AD).
    The results showed that the accuracy of the ternary classification is 0.87, the accuracy of
    distinguishing between cognitively normal and mild cognitive impairment is 0.95, the accu
    racy of distinguishing between mild cognitive impairment and Alzheimer’s disease is 0.84, and
    the accuracy of distinguishing between cognitively normal and Alzheimer’s disease is 0.99. The
    results indicate that there is a correlation between increased ventricular volume and cognitive de
    cline, providing new insights for the early diagnosis and progression monitoring of Alzheimer’s
    disease.
    However, there is still room for improvement in distinguishing between mild cognitive im
    pairment and Alzheimer’s disease. Future work could focus on incorporating features highly
    correlated with Alzheimer’s disease to improve the accuracy of the diagnostic method. In con
    clusion, the comprehensive diagnostic method proposed in this study has potential in improving
    the accuracy of Alzheimer’s disease diagnosis, providing an important reference for future re
    search and clinical applications.

    摘要iv Abstract v 誌謝vi 目錄vii 一、緒論1 二、研究方法4 2.1資料標準化.................................................................... 4 2.2模型結構...................................................................... 5 2.3損失函數...................................................................... 7 2.4優化器......................................................................... 8 2.5評估指標...................................................................... 9 三、資料來源及處理12 3.1資料蒐集...................................................................... 12 3.2資料預處理.................................................................... 13 四、研究結果17 4.1腦室體積對分類結果的影響.................................................. 19 4.2認知正常的對照組與輕度認知障礙患者與阿茲海默症患者.................. 20 4.3認知正常的對照組與輕度認知障礙患者...................................... 21 4.4輕度認知障礙患者與阿茲海默症患者........................................ 22 4.5認知正常的對照組與阿茲海默症患者........................................ 24 4.6認知正常的對照組與認知功能異常患者...................................... 25 五、 總結...................................... 27 參考文獻...................................... 28

    [1] J. Gaugler, B. James, T. Johnson, et al., “2022 alzheimer’s disease facts and figures,” Alzheimers
    &Dementia, vol. 18, no. 4, pp. 700–789, 2022.
    [2] R.C.Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Mild cog
    nitive impairment: Clinical characterization and outcome,” Archives of neurology, vol. 56, no. 3,
    pp. 303–308, 1999.
    [3] D.R. Roalf, P. J. Moberg, S. X. Xie, D. A. Wolk, S. T. Moelter, and S. E. Arnold, “Comparative
    accuracies of two common screening instruments for classification of alzheimer’s disease, mild
    cognitive impairment, and healthy aging,” Alzheimer’s & dementia, vol. 9, no. 5, pp. 529–537,
    2013.
    [4] S. L. Warren and A. A. Moustafa, “Functional magnetic resonance imaging, deep learning, and
    alzheimer’s disease: A systematic review,” Journal of Neuroimaging, vol. 33, no. 1, pp. 5–18,
    2023.
    [5] C.Jiang,X.Zhang,W.Huang,andC.Meinel,“Segmentationandquantificationofbraintumor,”in
    2004 IEEE Symposium on Virtual Environments, Human-Computer Interfaces and Measurement
    Systems, 2004.(VCIMS)., IEEE, 2004, pp. 61–66.
    [6] J. Wang, A. Ekin, and G. de Haan, “Shape analysis of brain ventricles for improved classification
    of alzheimer'spatients,” in 2008 15th IEEE International Conference on Image Processing, IEEE,
    2008, pp. 2252–2255.
    [7] S. M. Nestor, R. Rupsingh, M. Borrie, et al., “Ventricular enlargement as a possible measure of
    alzheimer’s disease progression validated using the alzheimer’s disease neuroimaging initiative
    database,” Brain, vol. 131, no. 9, pp. 2443–2454, 2008.
    [8] O. Colliot, G. Chételat, M. Chupin, et al., “Discrimination between alzheimer disease, mild cog
    nitive impairment, and normal aging by using automated segmentation of the hippocampus,” Ra
    diology, vol. 248, no. 1, pp. 194–201, 2008.
    [9] “Linear/fully-connected layers user’s guide.” (), [Online]. Available: https://docs.nvidia.
    com/deeplearning/performance/dl-performance-fully-connected/index.html.
    [10] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing
    internal covariate shift,” in International conference on machine learning, pmlr, 2015, pp. 448
    456.
    [11] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A sim
    ple way to prevent neural networks from overfitting,” The journal of machine learning research,
    vol. 15, no. 1, pp. 1929–1958, 2014.
    [12] D.P.KingmaandJ.Ba,“Adam:Amethodforstochasticoptimization,”arXivpreprintarXiv:1412.6980,
    2014.
    [13] “Confusion matrix.” (), [Online]. Available: https://www.ml-science.com/confusion
    matrix.
    [14] “Alzheimer's disease neuroimaging initiative.” (), [Online]. Available: https://adni.loni.
    usc.edu/.
    [15] M.F.Folstein, S. E. Folstein, and P. R. McHugh, ““mini-mental state": A practical method for
    grading the cognitive state of patients for the clinician,” Journal of psychiatric research, vol. 12,
    no. 3, pp. 189–198, 1975.
    [16] J. A. Yesavage, T. L. Brink, T. L. Rose, et al., “Development and validation of a geriatric de
    pression screening scale: A preliminary report,” Journal of psychiatric research, vol. 17, no. 1,
    pp. 37–49, 1982.
    [17] J. C. Morris, “The clinical dementia rating (cdr) current version and scoring rules,” Neurology,
    vol. 43, no. 11, pp. 2412–2412, 1993.
    [18] R.I.Pfeffer, T. T. Kurosaki, C. Harrah Jr, J. M. Chance, and S. Filos, “Measurement of functional
    activities in older adults in the community,” Journal of gerontology, vol. 37, no. 3, pp. 323–329,
    1982.
    [19] J. L. Cummings, M. Mega, K. Gray, S. Rosenberg-Thompson, D. A. Carusi, and J. Gornbein,
    “The neuropsychiatric inventory: Comprehensive assessment of psychopathology in dementia,”
    Neurology, vol. 44, no. 12, pp. 2308–2308, 1994.
    [20] “Welcome to antspynet's documentation!” (), [Online]. Available: https://antsx.github.
    io/ANTsPyNet/docs/build/html/index.html.
    [21] “Advanced normalization tools.” (), [Online]. Available: https://stnava.github.io/ANTs/.
    [22] “大津演算法.”(),[Online].Available: https://zh.wikipedia.org/zh-tw/%E5%A4%A7%E6%
    B4%A5%E7%AE%97%E6%B3%95.
    [23] R.M.Haralick,S.R.Sternberg,andX.Zhuang,“Imageanalysisusingmathematicalmorphology,”
    IEEE transactions on pattern analysis and machine intelligence, no. 4, pp. 532–550, 1987.

    QR CODE
    :::