跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔣宗辰
Zong-Chen Jiang
論文名稱: 以雙脂肪酸聚醇製備的水性PU之研究
The Study of Waterborne Polyurethane Based on a Polyol from Dimerised Fatty Acid
指導教授: 陳登科
Teng-Ko Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 63
中文關鍵詞: 水性PU
外文關鍵詞: WPU
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對非極性式Polyol(priplast 1838)來合成WPU,排除軟硬段間氫鍵的影響,預期能達到高的相分離程度;並以polyol (priplast 1838)本身之性質:抗水解、抗氧化等能力,而使WPU本身能具有減少吸水性的能力。
    實驗上選用的polyol為Uniqema公司所生產的priplast 1838,其本身為雙脂肪酸基單體,此Polyol具有飽和長碳鏈,且因其不具有雙鍵或參鍵,整體不易受到化學攻擊,使其具較佳的抗劣化之斥水性。目前僅有運用segment PU的部份,尚未有人用於製作WPU,所以本研究將利用此polyol為軟質段,硬質段方面用H12MDI為diisocyanate,DMPA為離子基,EDA為鏈延長劑,以不同硬質段含量(25~70%)與不同離子基含量(4~12%)的變化製出樣品來測試。
    測試方面運用FTIR來得知WPU的合成特徵峰,TGA可得知其裂解溫度在230℃左右,DSC方面觀察不到吸熱峰,僅於70℃發現小peak,可能為物理老化緣故。因為離子基增加的緣故,硬質段間的排列變得鬆散,使DMA測試的結果可以看到拉伸時的溫度由180℃降至80℃;拉力測試也有同樣結果,楊式模數從869.94降至719.39。而吸水性隨離子基與硬質段含量增加而由1%增加到9%,以上結果為此研究的成果。


    The study is synthesis waterborne polyurethane (WPU) by non-polar polyol (priplast 1838). Obviate the effect of hydrodic bonds between hard segment and soft segment, it’s can be reached high phase separate. By the property of polyol (priplast 1838): hydrolytic and oxidative stability, WPU can decrease the water absorbtion.
    The polyol is Priplast 1838 that made by Uniqema company. It’s dimerised fatty acid monomers. Because Saturated hydrocarbon and absence of ether links, it have stability against chemical attacked and hydrolytic. At present, it’s only used by segment PU. Not yet in WPU. The study is synthesis WPU by priplast 1838. Hard segment is H12MDI, ionic group is DMPA, chain extender is EDA. Made samples by change hard segment content(25~70%) and ionic group content(4~12%).
    In text, by using FTIR to realize peaks of WPU which known the synthesis process was done. Samples were started to decomposition at 230℃ that measured by TGA. There were not any endothermic peak in DSC, only a peak at 70℃ of physical aging. By increasing ionic group content, the less rigid structure of hard segment was formed. So the temperature of text of DMA was decreased form 180℃ to 80℃. Tensile text was the same with DMA, Younger’s modulus decreased from 869.94 to 719.39. Water adsorbtion was increasing from 1% to 9% by increasing ionic content. The result of study is shown on the here.

    摘要 I 英文摘要 II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 第二章 文獻回顧 3 2-1 水性PU的介紹 3 2-1-1 PU的結構 3 2-1-2 親水基的導入 4 2-1-3 PU ionomers 6 2-1-4 水性PU主要製程 6 2-2 水性PU的物理性質 13 2-2-1 水性PU分散液的安定機制 13 2-2-2 電雙層理論 14 2-2-3 水性PU成膜後之性質 19 2-3 水性PU的形態與結構 20 第三章 實驗部份 22 3-1 化學藥品 22 3-2 儀器設備 23 3-3 水性PU的合成 24 3-4 實驗方析方法 26 3-4 PU的編號 28 第四章 結果與討論 29 4-1 priplast分子量滴定結果: 29 4-2 FTIR 分析: 29 4-3 熱裂解性質: 35 4-4 DSC 熱分析: 37 4-5 DMA 分析: 41 4-6 Tensile 分析: 44 4-7 吸水率及重量損失率: 46 第五章 結論 49 參考文獻 50 圖目錄 圖2-1 PU 結構示意圖 3 圖2-2 陽離子型內部乳化劑 4 圖2-3 陰離子型內部乳化劑 5 圖2-4 非離子型內部乳化劑 5 圖2-5 Acetone Process 7 圖2-6 Prepolymer Mixing Process 8 圖2-7 Hot-Melt Process 9 圖2-8(a) Ketimine & Ketazine process 10 圖2-8(b) Ketimine & Ketazine process 11 圖2-9 Steric 與Electrostatic stabilization 15 圖2-10 電雙層圖示 16 圖2-11 Stern 與Diffuse layer 17 圖2-12 Model 1:硬質段含量較少,離子基含量也較少 21 圖2-13 Model 2:硬質段含量提高,離子基含量較多 21 圖2-14 Model 3:硬質段含量再提高,離子基含量也更多 21 圖3-1 拉力測試之試片尺寸 28 圖4-1 YY-04 IR 測試圖 31 圖4-2 ZZ-04 IR 測試圖 31 圖4-3 YY-08 IR 測試圖 32 圖4-4 YY-12 IR 測試圖 32 圖4-5 55-ZZ IR 測試圖 33 圖4-6 65-ZZ IR 測試圖 33 圖4-7 70-ZZ IR 測試圖 34 圖4-8 55-XX TGA 測試圖 36 圖4-9 55-XX DTG 測試圖 37 圖4-10 YY-04 DSC 圖譜 38 圖4-11 ZZ-04 DSC 圖譜 39 圖4-12 YY-08 DSC 圖譜 39 圖4-13 55-XX DSC 圖譜 40 圖4-14 65-XX DSC 圖譜 40 圖4-16 YY-08 DMA 圖譜 42 圖4-17 55-ZZ DMA 圖譜 43 圖4-18 65-ZZ DMA 圖譜 44

    1. U.S. Patent 4183836 , Du Pont (1980)
    2. H.A. Al-Salah , K.C.Frisch , H.X.Xiao , J.A. , Jr. , J. Applied Polymer Science A , 1988 , 26 , 1609~1620
    3. Egboh , S.H. , J.Macromol.Sci.Chem. A , 1984 , 21 , 35
    4. U.S. Patent 4190566 , Bayer A.G. (1980)
    5. Dieterich D. , Keberle W. and Witt H. , Angew Chem. Int. Edn. ,
    1970 , 9 , 40
    6. Wei and X.Yu , J. Appl. Polym. Sci Part B:Polym. Phys. , 1997 ,
    35 , 225~232
    7. R.D.Lundberg , "Encyclopedia of Chemical Technology" , 3rd ed. ,
    1984 , Supplement Volume , 546
    8. R.A.Register , X-hai Yu and S.L.Cooper , Polym. Bull ,1989 , 22 , 565
    9. G.C.Marx , D.F.Caulfield and S.L.Cooper , Macromolecules , 1973 ,6 , 344
    10. C.G.Bazuin and A. Eisenberg , Ind. Eng. Chem. Prod. Res. Dev. ,
    1981 , 20 , 271
    11. A.Eisenberg , B.Hard and R.B.More , Macromolecules , 1990 , 23 ,
    4098
    12. C.Z.Yang , T.G.Grasel , J.L.Bell , R.A.Register and S.L.Cooper ,
    J.Polym.Sci.:Polym.Phys., 1991, 29, 581
    13. C.Hepburn, Polyurethane Elastomers, Applied Science Publishers, New York, 1982.
    14. R.J.Hunter , "Zeta Potential in Colloid Science : Principles and
    applications" , Academic Press , London , 1985
    15.R.J.Hunter,Rose G ,Colloid and Polymer Science ,1981 , 259, 587
    16. Mackor , E.C. , J.Coll.Sci. , 1951 , 6 , 492 Ch4
    17.鄭詔仁,水性PU之流變性質研究,國立中央大學化學工程與材料工程系碩士論文,1990
    18.黃世敏,非極性式水性聚胺基甲酸酯-脲酯之合成、結構與物性, 國立中央大學化學工程與材料工程系博士論文,2008
    19. J. Cho, K.S. Song, J.W. Kim, T.H. Kim and K. Choo. Fuel Chemistry Division, 224th National Meeting of the American Chemical Society, 2002, 47, 790-791.
    20. B. Panella, L. Kossykh, U. Dettlaff-Weglikowska,
    M. Hirscher, Giuseppe Zerbi, Siegmar Roth, Synthetic Metals 151, 2005, 208–210.
    21. Y.Z. Wang, Y.C. Hsu, R.R. Wu, H.M. Kao, Synthetic Metals 132, 2003, 151–160.
    22. H. Letherby, J. Chem. Soc. 1862, 15, 16.
    23. Dieterich D. , Keberle W. and Witt H. , Angew Chem. Int. Edn. ,
    1970 , 9 , 4014.
    24. R.J.Hunter , Rose G , Colloid and Polymer Science , 1981 , 259 , 587.
    25. F. M. B. Coutinho, M. C. Delpech, L. S. Alves, J. Appl. Polym. Sci., 80, 566 (2001).
    26. F. M. B. Coutinho, M. C. Delpech, Polym. degradation stab., 2000, 70, 49 .
    27. F. M. B. Coutinho, M. C. Delpech, T. L. Alves, A. A. Ferreira, Polym. Degradation Stab. 2003, 81, 19.
    28. Y. Chen, Y. L. Chen, J. Appl. Polym. Sci., 1992, 46, 435 .
    29. W. C. Chan, S. A. Chen, J. Polym. Sci., Polym.Phys.,1990, 28, 1499.
    30. C. Z. Yang, T. G. Grasel, J. L. Bell, R. A. Register, S. L. Cooper, J. Polym. Sci., Polym. Phys.,1991, 29, 581.
    31. B. K. Kim, Y. M. Lee, J. Appl. Polym. Sci.,1994, 54, 1809 .
    32. Y. M. Lee, J. C. Lee, B. K. Kim, Polymer, 1994, 35, 1095.
    33. D. J. Hourston, G. D. Williams, R. Satguru, J. C. Padget, D. Pears, J. Appl. Polym. Sci., 1999, 74, 556.
    34. D. J. Hourston, G. Williams, R. Satguru, J. D. Padget, D. Pears, J. Appl. Polym. Sci., 1997, 66, 2035.
    35.L. Born, H. Hespe, Colloid Polym. Sci., 1985, 263, 335.
    36 .J. Skrovanek, S. E. Howe, P. C. Painter, M. M. Coleman, Macromolecules,1985, 18, 1676.
    37.王啟蒼,巨大基團的合成及巨大基團對Polyurehtane urea結構與 性質的影響,國立中央大學化學工程與材料工程系碩士論文,2008

    QR CODE
    :::