跳到主要內容

簡易檢索 / 詳目顯示

研究生: 魏君穎
Chun-Ying Wei
論文名稱: 含溴玻璃纖維裂解產能及污染物去除之可行性評估研究
Feasibility of energy yield and pollutants removal in pyrolysis of brominated glass fiber
指導教授: 江康鈺
Kung-Yuh Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 212
中文關鍵詞: 熱裂解含溴玻璃纖維催化劑吸附劑脫溴
外文關鍵詞: pyrolysis, brominated glass fiber, catalyst, adsorbent, debromination
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用爐內催化熱裂解技術及爐外高溫淨化系統,探討含溴玻璃纖維在
    催化裂解過程,提升產能效率及污染物去除之可行性,其中試驗溫度控制於600℃,
    爐內個別添加之催化劑分別為沸石及鍛燒白雲石,催化劑添加配比介於25 wt.%
    至100 wt.%。爐外高溫淨化系統操作溫度控制於250℃,期進一步評估高溫淨化
    系統對生質油品質提升及污染物去除之影響。
    研究結果顯示,含溴玻璃纖維熱裂解產物主要以焦碳及生質油為主,分別為
    75.45%及16.13%,當爐內添加25 wt.%、50 wt.%及100 wt.%之沸石及煅燒白雲
    石之條件,生質油產率明顯降低,其中添加沸石之試驗結果,由未添加沸石之
    16.13%,降低至添加100 wt.%沸石之9.55%,添加煅燒白雲石對生質油產率降低
    之影響更為明顯,當添加100 wt.%煅燒白雲石之條件時,生質油產率降低至3.65%。
    然而,根據生質油之特性分析結果可知,爐內添加催化劑對降低生質油之黏滯度
    有顯著之影響,其中添加沸石之試驗結果,生質油之O/C 比,由0.44 降至0.31,
    而添加煅燒白雲石之試驗結果,生質油之O/C 比更明顯由0.44 降至0.15。此外,
    生質油之熱值則隨添加爐內催化劑後,明顯有增加之現象,分別由未添加催化劑
    之4,693 kcal/kg,增加至5,585 kcal/kg(100 wt.%沸石)及7,120 kcal/kg(100 wt.%煅
    燒白雲石)。
    應用爐外高溫淨化系統之試驗結果顯示,高溫淨化系統亦會降低生質油產率,
    其中沸石、煅燒白雲石及活性碳之個別型高溫淨化系統,生質油產率分別降至
    7.39%、4.20%及4.51%。然而,整合型高溫淨化系統對生質油產率之影響更為明
    顯,其生質油產率降低至3.83%。而根據生質油之特性分析結果可知,整合型高
    溫淨化系統之試驗結果,生質油之O/C 比降至0.35,沸石、煅燒白雲石及活性碳
    之個別型高溫淨化系統,生質油O/C 比分別降至0.23、0.09 及0.11。此外,生質
    油之熱值隨高溫淨化系統之應用,亦有增加之現象,熱值增加至5,529 kcal/kg(整
    合型)、6,526 kcal/kg(沸石)、7,927 kcal/kg(煅燒白雲石)及7,543 kcal/kg(活性碳)。根據污染物之去除結果顯示,爐內添加催化劑能降低含溴玻璃纖維中之溴含
    量,其中添加沸石之試驗結果,溴之去除率達25.42%(100 wt.%沸石),而添加煅
    燒白雲石之試驗結果,溴之去除率達18.98%(25 wt.%煅燒白雲石)。應用爐外高溫
    淨化系統對溴之去除效果更為明顯,應用整合型爐外高溫淨化系統,溴去除率達
    37.63%;沸石、煅燒白雲石及活性碳之個別型高溫淨化系統,溴去除率分別達
    45.58%、50.68%及14.09%,綜合上述結果所示,爐外連接高溫淨化程序系統之溴
    去除效果較爐內添加催化劑之效果佳。
    整體而言,本研究已建立含溴玻璃纖維之基本特性、熱裂解技術評估能源轉
    換效率,以及污染物質溴排放特性之評估,研究成果應可提供未來含溴玻璃纖維
    能源技術選擇,及污染物質溴排放控制策略之重要參考依據。


    This research investigates that the feasibility of energy yields as well as the bromine
    partitioning and emission characterization in catalytic pyrolysis of brominated glass
    fiber by using fixed bed reactor with controlled at pyrolysis temperature 600℃ and
    25~100 wt.% mineral catalyst (zeolite and calcined dolomite) addition. The hot gas
    cleaning system was also used to evaluate the enhancement on pyrolytic oil quality and
    the contaminants removal with controlled at temperature 250℃.
    The experimental results indicated that the major pyrolytic products of brominated
    glass fiber are consisted of 75.45% char and 16.13% oil, respectively. The pyrolytic oil
    yield was decreased significantly with the catalysts addition ration increasing. In the
    case of zeolite addition, the pyrolytic oil production decreased from 16.13% (without
    zeolite) to 9.55% (with 100 wt.% zeolite). Meanwhile, in the case of 100% calcined
    dolomite addition, the pyrolytic oil production was significantly decreased to 3.65%.
    However, according to the results of pyrolytic oil characteristics analysis, decreasing the
    viscosity of pyrolytic oil was significantly affected by catalyst added. The O/C ratio of
    pyrolytic oil was decreased from 0.44 to 0.31 with an increase in zeolite addition. When
    the calcined dolomite added, the O/C ratio of pyrolytic oil was significantly decreased
    to 0.15. In addition, the heating value of the pyrolytic oil was also significantly increased
    from 4,693 kcal/kg (without catalyst) to 5,585 kcal/kg (with 100 wt.% zeolite) and 7,120
    kcal/ kg (with 100 wt.% calcined dolomite), respectively.
    The results obviously showed that the pyrolytic oil yield was also decreased by
    using the hot gas cleaning system. In the case of individual hot gas cleaning system
    equipped with zeolite, calcined dolomite and activated carbon, the pyrolytic oil yields
    were decreased to 7.39%, 4.20% and 4.51%, respectively. However, the integration of hot gas cleaning system depicted a significant effect on the pyrolytic oil yield during
    pyrolysis process. The pyrolytic oil was approximately decreased to 3.83%. According
    to the results of the pyrolytic oil characteristics analysis, the O/C ratio of pyrolytic oil
    was decreased to 0.35 by integration of hot gas cleaning system used. In the case of
    activated carbon application, the O/C ratio of pyrolytic oil was significantly decreased
    to 0.11. It implied the pyrolytic oil quality had been improved. Moreover, in the case of
    hot gas cleaning system application, the heating value of pyrolytic oil increased from
    4,693 kcal/kg (without hot gas cleaning system) to 5,529 kcal/kg (integration system),
    6,526 kcal/kg (with zeolite only), 7,927 kcal/kg (with calcined dolomite only) and 7,543
    kcal/kg (with activated carbon only), respectively.
    The bromine removal efficiency results were showed that the bromine content in
    brominated glass fiber was decreased with catalyst addition increasing. In the case of
    100% zeolite and 25% calcined dolomite addition, the bromine removal efficiency were
    25.42% and 18.98%, respectively. On the other hand, the bromine removal efficiency
    was approximately 37.63% when the integration of hot gas cleaning system was used.
    In the case of individual hot gas cleaning system, bromine removal efficiencies were
    45.58% (with zeolite), 50.68% (with calcined dolomite), and 14.09% (with activated
    carbon), respectively. Based on the above results, the hot gas cleaning system for
    bromine removal could be better than that of catalyst added in the reactor.
    In summary, the basic characteristics of brominated glass fiber and energy
    conversion efficiency by pyrolysis were well established, but also the bromine emissions
    characteristics was assessed. Therefore, the results of this study could provide the good
    information for brominated glass fiber in selection of pyrolysis technologies and control
    strategies of bromine emission in the future.

    目錄 摘要.............................................................................................................................. i Abstract ..................................................................................................................... iii 致謝............................................................................................................................. v 目錄............................................................................................................................ vi 圖目錄 ........................................................................................................................ ix 表目錄 ........................................................................................................................ xi 第一章 前言 ........................................................................................................... 1 第二章 文獻回顧 ................................................................................................... 4 2-1 廢棄印刷電路板處理現況 ............................................................................ 4 2-2 廢棄印刷電路板資源化之處理技術 ............................................................ 6 2-2-1 機械物理法(Physical crushing or mechanical process) ....................... 6 2-2-2 化學試劑法(Chemical process) .......................................................... 6 2-2-3 生物溶出法(Biological leaching process) ........................................... 8 2-2-4 焚化法(Incineration process) .............................................................. 8 2-3 廢棄印刷電路板之溶出特性 ...................................................................... 10 2-3-1 重金屬溶出特性 .............................................................................. 10 2-3-2 溴化阻燃劑(BFRs)溶出特性 ........................................................... 11 2-4 熱重分析(TGA) .......................................................................................... 13 2-5 溴化阻燃劑(BFRs) ...................................................................................... 15 2-6 熱裂解 ......................................................................................................... 21 2-6-1 熱裂解產物 ...................................................................................... 26 2-6-2 熱裂解產物影響因素 ....................................................................... 29 第三章 研究材料與方法 ..................................................................................... 33 3.1 研究材料 ..................................................................................................... 33 vii 3-1-1 含溴玻璃纖維 .................................................................................. 33 3-1-2 爐內催化劑 ...................................................................................... 33 3-1-3 爐外吸附劑 ...................................................................................... 34 3-2 試驗方法 ..................................................................................................... 34 3-2-1 原料之動力學分析 .......................................................................... 34 3-2-1 試驗設備 .......................................................................................... 36 3-2-2 操作條件 .......................................................................................... 41 3-2-3 試驗步驟 .......................................................................................... 42 3-3 分析項目與方法 ......................................................................................... 43 3-3-1 含溴玻璃纖維 .................................................................................. 43 3-3-2 催化劑 .............................................................................................. 48 3-3-3 熱裂解產物 ...................................................................................... 49 3-3-4 質量平衡 .......................................................................................... 61 3-3-5 污染物分佈 ...................................................................................... 62 第四章 結果與討論 ............................................................................................. 63 4-1 試驗材料之基本特性分析 .......................................................................... 63 4-1-1 原料之基本特性分析結果 .............................................................. 63 4-1-2 催化劑及吸附劑之基本特性分析 .................................................. 66 4-2 熱反應動力特性分析 ................................................................................. 69 4-2-1 熱重損失之分析結果 ...................................................................... 69 4-2-2 反應活性及活化能之分析結果 ...................................................... 70 4-2-3 熱反應過程氣相物種之官能基分析 .............................................. 75 4-3 熱裂解產物量之分析結果 ......................................................................... 77 4-3-1 熱裂解試驗之重覆分析結果 .......................................................... 77 4-3-2 熱裂解產物之質量平衡 .................................................................. 77 4-3-3 爐內催化劑對產物量之影響 .......................................................... 92 4-3-4 連接爐外高溫淨化程序系統對產物量之影響 ............................... 95 4-4 爐內添加催化劑之熱裂解產物特性及產能效率分析 ............................ 100 4-4-1 原始熱裂解之產物特性分析 ........................................................ 100 4-4-2 添加催化劑對產物特性之影響 .................................................... 104 4-4-3 添加催化劑對熱裂解產能效率之評估......................................... 120 4-5 爐外連接高溫淨化系統之熱裂解產物特性分析 ..................................... 131 4-6 爐內與爐外熱裂解操作條件過程之污染物溴流佈結果 ........................ 145 4-6-1 爐內催化熱裂解之產物溴分佈特性 ............................................ 145 4-6-2 爐外高溫淨化程序系統之熱裂解產物溴分佈特性 ..................... 151 4-6-3 爐內催化劑及爐外吸附劑污染物去除之共同比較 ..................... 156 第五章 結論與建議 ........................................................................................... 162 5-1 結論 .......................................................................................................... 162 5-1-1 含溴玻璃纖維之基本特性分析結果 ............................................ 162 5-1-2 爐內催化劑對熱裂解產物影響之結果 ...................................... 163 5-1-3 爐外高溫淨化程序系統對熱裂解產物影響之結果 ..................... 163 5-1-4 爐內及爐外操作條件對熱裂解過程污染物流佈影響之結果 ...... 164 5-2 建議 .......................................................................................................... 165 參考文獻 ................................................................................................................. 166 附錄......................................................................................................................... 172

    Atasever, Ş., Bozkurt, P.A., Canel, M., 2015. Pyrolysis of waste printed circuit board
    particles. International Journal of Energy Optimization and Engineering (IJEOE)
    4, 70-75.
    Awasthi, A.K., Zlamparet, G.I., Zeng, X., Li, J., 2017. Evaluating waste printed circuit
    boards recycling: Opportunities and challenges, a mini review. Waste Management
    & Research 35, 346-356.
    Blazsó, M., Czégény, Z., Csoma, C., 2002. Pyrolysis and debromination of flame
    retarded polymers of electronic scrap studied by analytical pyrolysis. Journal of
    Analytical and Applied Pyrolysis 64, 249-261.
    Burwell Jr, R.L., 1977. Manual of Symbols and Terminology for Physicochemical
    Quantities and Units—Appendix II Heterogeneous Catalysis, Advances in
    Catalysis. Elsevier, pp. 351-392.
    Chien, Y.C., Wang,H. P., Lin, K. S.,Huang, Y. J. and Yang, Y. W., 2000. Fate of bromine
    in pyrolysis of printed circuit board wastes. Chemosphere, 40: 383-387.
    Coats, A.W., Redfern, J., 1964. Kinetic parameters from thermogravimetric data. Nature
    201, 68.
    Evangelopoulos, P., Kantarelis, E., Yang, W., 2015. Investigation of the thermal
    decomposition of printed circuit boards (PCBs) via thermogravimetric analysis
    (TGA) and analytical pyrolysis (Py–GC/MS). Journal of Analytical and Applied
    Pyrolysis 115, 337-343.
    Evangelopoulos, P., Kantarelis, E., Yang, W., 2017. Experimental investigation of the
    influence of reaction atmosphere on the pyrolysis of printed circuit boards. Applied
    Energy 204, 1065-1073.
    Galvagno, S., Fortuna, F., Cornacchia, G., Casu, S., Coppola, T., Sharma, V., 2001.
    Pyrolysis process for treatment of automobile shredder residue: preliminary
    experimental results. Energy Conversion and Management 42, 573-586.
    Ghosh, B., Ghosh, M., Parhi, P., Mukherjee, P., Mishra, B., 2015. Waste printed circuit
    boards recycling: an extensive assessment of current status. Journal of Cleaner
    Production 94, 5-19.
    Hadi, P., Ning, C., Ouyang, W., Xu, M., Lin, C.S., McKay, G., 2015. Toward
    environmentally-benign utilization of nonmetallic fraction of waste printed circuit
    boards as modifier and precursor. Waste management 35, 236-246.
    Hall, W.J., Williams, P.T., 2006. Pyrolysis of brominated feedstock plastic in a fluidised
    bed reactor. Journal of Analytical and Applied Pyrolysis 77, 75-82.
    Hall, W.J., Williams, P.T., 2007. Separation and recovery of materials from scrap printed
    circuit boards. Resources, Conservation and Recycling 51, 691-709.
    Hall, W.J., Williams, P.T., 2008. Removal of organobromine compounds from the
    pyrolysis oils of flame retarded plastics using zeolite catalysts. Journal of
    analytical and applied pyrolysis 81, 139-147.
    Jie, G., Min, X., Wu, W., Zhang, C., Wang, J., Bai, J., 2012. Suppressing effect of
    calcium-based waste on control of bromine flux during the pyrolysis of printed
    circuit boards. Waste Management & Research 30, 1145-1150.
    Jin, Y.Q., Tao, L., Chi, Y., Yan, J.H., 2011. Conversion of bromine during thermal
    decomposition of printed circuit boards at high temperature. Journal of hazardous
    materials 186, 707-712.
    Kim, Y.J., Osako, M., Sakai, S.I., 2006. Leaching characteristics of polybrominated
    diphenyl ethers (PBDEs) from flame-retardant plastics. Chemosphere 65, 506-513.
    Kim, Y.M., Han, T.U., Kim, S., Jae, J., Jeon, J.K., Jung, S.C., Park, Y.K., 2017. Catalytic
    co-pyrolysis of epoxy-printed circuit board and plastics over HZSM-5 and HY.
    Journal of Cleaner Production 168, 366-374.
    Kim, Y.M., Kim, S., Lee, J.Y., Park, Y.K., 2013. Pyrolysis reaction pathways of waste
    epoxy-printed circuit board. Environmental Engineering Science 30, 706-712.
    Kumar, A., Holuszko, M.E., Janke, T., 2018. Characterization of the non-metal fraction
    of the processed waste printed circuit boards. Waste Management 75, 94-102.
    Long, L., Sun, S., Zhong, S., Dai, W., Liu, J., Song, W., 2010. Using vacuum pyrolysis
    and mechanical processing for recycling waste printed circuit boards. Journal of
    Hazardous Materials 177, 626-632.
    Ma, C., Yu, J., Wang, B., Song, Z., Xiang, J., Hu, S., Su, S., Sun, L., 2016. Chemical
    recycling of brominated flame retarded plastics from e-waste for clean fuels
    production: a review. Renewable and Sustainable Energy Reviews 61, 433-450.
    Ma, C., Yu, J., Wang, B., Song, Z., Xiang, J., Hu, S., Su, S., Sun, L., 2017. Catalytic
    pyrolysis of flame retarded high impact polystyrene over various solid acid
    catalysts. Fuel Processing Technology 155, 32-41.
    Muhammad, C., Onwudili, J.A., Williams, P.T., 2015. Catalytic pyrolysis of waste
    plastic from electrical and electronic equipment. Journal of Analytical and Applied
    Pyrolysis 113, 332-339.
    Ni, M., Xiao, H., Chi, Y., Yan, J., Buekens, A., Jin, Y., Lu, S., 2012. Combustion and
    inorganic bromine emission of waste printed circuit boards in a high temperature
    furnace. Waste management 32, 568-574.
    Ortuño, N., Conesa, J.A., Moltó, J., Font, R., 2014. Pollutant emissions during pyrolysis
    and combustion of waste printed circuit boards, before and after metal removal.
    Science of The Total Environment 499, 27-35.
    Ortuño, N., Moltó, J., Egea, S., Font, R., Conesa, J.A., 2013. Thermogravimetric study
    of the decomposition of printed circuit boards from mobile phones. Journal of
    analytical and applied pyrolysis 103, 189-200.
    Ren, Z., Xiao, X., Chen, D., Bi, X., Huang, B., Liu, M., Hu, J., Peng, P.a., Sheng, G.,
    Fu, J., 2014. Halogenated organic pollutants in particulate matters emitted during
    recycling of waste printed circuit boards in a typical e-waste workshop of Southern
    China. Chemosphere 94, 143-150.
    Stuhlpfarrer, P., Luidold, S., Antrekowitsch, H., 2016. Recycling of waste printed circuit
    boards with simultaneous enrichment of special metals by using alkaline melts: A
    green and strategically advantageous solution. Journal of hazardous materials 307,
    17-25.
    Terakado, O., Ohhashi, R., Hirasawa, M., 2013. Bromine fixation by metal oxide in
    pyrolysis of printed circuit board containing brominated flame retardant. Journal
    of analytical and applied pyrolysis 103, 216-221.
    Xing, M., Zhang, F.-S., 2013. Degradation of brominated epoxy resin and metal
    recovery from waste printed circuit boards through batch sub/supercritical water
    treatments. Chemical engineering journal 219, 131-136.
    Xu, Y., Liu, J., 2015. Recent developments and perspective of the spent waste printed
    circuit boards. Waste Management & Research 33, 392-400.
    Xue, Y., Zhou, S., Brown, R.C., Kelkar, A., Bai, X., 2015. Fast pyrolysis of biomass and
    waste plastic in a fluidized bed reactor. Fuel 156, 40-46.
    Zhang, M., Buekens, A., Li, X., 2016. Brominated flame retardants and the formation
    of dioxins and furans in fires and combustion. Journal of hazardous materials 304,
    26-39.
    Zhou, X., Guo, J., Lin, K., Huang, K., Deng, J., 2013. Leaching characteristics of heavy
    metals and brominated flame retardants from waste printed circuit boards. Journal
    of hazardous materials 246, 96-102.
    Zhu, P., Chen, Y., Wang, L., Zhou, M., Zhou, J., 2013. The separation of waste printed
    circuit board by dissolving bromine epoxy resin using organic solvent. Waste
    management 33, 484-488.
    王愫懃,張添晉,廢電子電器物料供應與循環利用之研究,中華民國環境工程學
    會2010 廢棄物處理技術研討會,屏東,2010。
    李清華,李文成,劉冠廷,郭碧芳,柯秀靜,李孟謙,含銅電子廢棄物經電漿熔
    融處理後之銅回收,第十三屆海峽兩岸環境保護學術研討會,重慶,2010。
    李慈蘋,陳宏達,蕭宏蒝,吳俊毅,黃鈺軫,蔡敏行,以針鐵礦法回收印刷電路
    板污泥中鐵之研究,中華民國環境工程學會2004 廢棄物處理技術研討會,
    臺南,2004。
    汪敬祐,吳照雄,林育德,劉華昕,鄭翰翔,陳威豪,廢手機熱裂解動力學之研
    究,中華民國環境工程學會2012 廢棄物處理技術研討會,桃園,2012。
    林明輝,應用高溫淨化技術去除稻稈氣化共乘衍生焦油之評估研究,逢甲大學碩
    士論文,2011。
    姚彥丞,江康鈺,呂承翰,塑膠廢棄物催化裂解產能效率與裂解油物種特性變化
    之評估研究,中華民國環境工程學會2017 廢棄物處理技術研討會,臺北,
    2017。
    黃于峯,張宇翔,夏瑋念,駱尚廉,微波加熱技術應用於電子廢棄物資源回收之
    初探,中華民國環境工程學會2018 廢棄物處理技術研討會,臺南,2018。
    許景翔,馬小康,電子廢棄物貴金屬回收再利用之綠循環經濟產業,台灣大學碩
    士論文,2017。
    黃文星,付建勛,林偉凱,台灣金屬資源再生技術之現況與展望,科學發展月刊,
    pp.92-96,2011。
    葉日浩,吳照雄,戴政立,江敬祐,廢手機添加觸媒熱裂解之研究,中華民國環
    境工程學會2012 廢棄物處理技術研討會,高雄,2013。
    蔡宗育,黃宇,方鴻源,印刷電路板業廢酸液之銅金屬回收,中華民國環境工程
    學會2008 廢棄物處理技術研討會,臺北,2008。
    蔣立中,王怡靜,廢電子零件廢棄物環境溶出風險探討,中華民國環境工程學會
    2012 廢棄物處理技術研討會,高雄,2013。
    蔣岳峰,吳照雄,廢電腦塑膠物質添加觸媒熱裂解之研究,大葉大學碩士論文,
    2005。
    戴政立,吳照雄,林京樺,葉日浩,操作條件對廢手機熱裂解之影響,中華民國
    環境工程學會2014 廢棄物處理技術研討會,臺中,2014。
    簡碩賢,張添晉,電子廢棄物循環利用與經濟效益,環境工程會刊,2017。
    藍宸鑾,林國雄,江鴻龍,廢印刷電路板熱裂解處理及資源化污染特性分析,中
    華民國環境工程學會2018 廢棄物處理技術研討會,臺南,2018。
    顏余真,徐志昆,陳韻潔,賴怡潔,葉華光,王雅玢,超臨界技術於廢棄印刷電
    路板資源回收之研究,中華民國環境工程學會2012 廢棄物處理技術研討會,
    桃園,2012。
    蘇炤亘,江右君,鄭文鋒,印刷電路板鑽孔廢料資源化之可行性研究,中華民國
    環境工程學會2006 廢棄物處理技術研討會,臺中,2006。
    張富欽,廢印刷電路板之有用金屬回收,中華民國環境工程學會2008 廢棄物處
    理技術研討會,臺北,2008

    QR CODE
    :::