跳到主要內容

簡易檢索 / 詳目顯示

研究生: 洪瑞成
Rui-Cheng Hong
論文名稱: 準相位匹配波導真空壓縮態量子光源晶片之研究
Study of squeezed vacuum state quantum sources based on quasi-phase-matched waveguide chips
指導教授: 陳彥宏
Yen-Hung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 108
中文關鍵詞: 鈮酸鋰準相位匹配壓縮態
外文關鍵詞: Lithium Niobate, Quasi-phase-matching, Squeezing states
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於量子壓縮光源的生成及其光路的積體化,旨在提升光路的擴展性與操作穩定性。透過單通光參量放大器,我們成功產生了基於海森堡不確定性原理的非古典壓縮態光源,實現了在一個正交項上超越標準量子極限的最小擾動,同時其對應的另一個正交項擾動則略增,從而在量子感測領域中達到更高的精度。

    在實現壓縮光源的過程中,本研究採用鈮酸鋰基板,並利用光束傳播法模擬波導的單模條件來優化轉換效率。透過一系列半導體製程技術,包括黃光微影、薄膜沉積、擴散、研磨拋光及蝕刻,我們製備了具有準相位匹配的周期性晶疇反轉結構和退火質子交換波導的晶片。進行古典量測後,結果顯示在1550nm波長下,晶片的傳播損耗為0.4414dB/cm,二倍頻轉換效率達到62.36%/W,相位匹配溫度為155.1℃,非線性增益的轉換效率和重疊係數分別為63.31%/W和0.4568。進一步地,通過在平衡零差檢測架構下對不同晶片進行測量,我們在泵浦功率為80mW、檢測效率為0.343的條件下,量測到0.760dB的反壓縮能級和-0.566dB的壓縮能級,從而驗證了量測架構的檢測能力。

    未來研究將著重於優化質子交換波導的製程技術,結合反向質子交換製程來製作埋入式波導,以提升轉換效率和降低傳播損耗。此外,通過在鈮酸鋰基板中摻雜Mg、Zn離子來增加對光折變的抵抗能力,將使元件能夠在更高功率下運行。同時,埋入式波導的對稱模態分佈提高光纖耦合效率,將來能嘗試使用二次OPA放大過程來產生更大的壓縮能級,將為量子計算等應用提供更大的容錯。面向未來高度整合的光學晶片,使用具有更高光限制的鈮酸鋰薄膜將成為關鍵發展方向。


    This study is dedicated to the generation of quantum compressed light sources and the integration of their optical paths, aiming to enhance the scalability and operational stability of the optical routes. Through the use of a single-pass optical parametric amplifier, we successfully produced a non-classical compressed state light source based on the Heisenberg uncertainty principle, achieving minimal disturbance beyond the standard quantum limit on one orthogonal component, while slightly increasing the disturbance on its corresponding orthogonal component, thereby achieving higher precision in the quantum sensing domain.

    In the process of realizing the compressed light source, this study employed a lithium niobate substrate and utilized the beam propagation method to simulate the single-mode conditions of the waveguide to optimize the conversion efficiency. Through a series of semiconductor fabrication techniques, including photolithography, thin-film deposition, diffusion, polishing, and etching, we prepared a chip with a quasi-phase-matched periodic domain inversion structure and annealed proton-exchanged waveguides. Subsequent classical measurements showed that at a wavelength of 1550nm, the chip's propagation loss was 0.4414dB/cm, the frequency doubling conversion efficiency reached 62.36%/W, the phase-matching temperature was 155.1°C, and the conversion efficiency and overlap coefficient of the nonlinear gain were 63.31%/W and 0.4568, respectively. Furthermore, by measuring different chips under a balanced homodyne detection architecture, we measured a de-compression level of 0.760dB and a compression level of -0.566Db under the conditions of a pump power of 80mW and a detection efficiency of 0.343, thus verifying the measurement structure's detection capability.
    Future research will focus on optimizing the fabrication technology of proton-exchanged waveguides and combining the reverse-proton-exchange process to produce embedded waveguides to enhance the conversion efficiency and reduce propagation loss. Additionally, by doping the lithium niobate substrate with Mg and Zn ions to increase resistance to photorefractive effects, the components will be able to operate at higher power levels. At the same time, the symmetric mode distribution of embedded waveguides will improve the fiber coupling efficiency, and it may be possible to try using a secondary OPA amplification process to generate a larger compression level, providing greater fault tolerance for applications such as quantum computing. Looking forward to highly integrated optical chips in the future, the use of lithium niobate thin films with higher optical confinement will become a key direction for development.

    中文摘要 ……………………………………………………ⅰ Abstract ……………………………………………………ⅱ 致謝 ……………………………………………………ⅳ 目錄 ……………………………………………………ⅴ 圖目錄 ……………………………………………………ⅷ 表目錄 ……………………………………………..……ⅹⅲ 第一章 緒論……………………………………….…………1 1.1 研究動機……………………………………………………..1 1.2 積體光路…………………………………………………..…2 1.2.1 積體光路簡介………………………………………...….2 1.2.2 積體光路的基板材料………………………………...….4 1.3 鈮酸鋰晶體特性……………………………………………..7 1.4 內容概要………………………………………………..…..10 第二章 理論………………………………………...………12 2.1 鈮酸鋰波導…………………………………..……………..12 2.1.1. 鈮酸鋰波導製作方法……………………………..….12 2.1.2. 鈦擴散波導與質子交換波導的比較………...………12 2.1.3. 退火質子交換波導……………………………...……14 2.1.4. 質子交換鈮酸鋰的晶體結構…………………….…..20 2.1.5. 退火質子交換模型……………………………….…..23 2.1.6. 退火後非線性係數之恢復………………………...…27 2.2 非線性轉換理論………………………………………..…..28 2.2.1. 非線性極化率……………………………….………..28 2.2.2. 非線性介質中的波動方程式……………………...…29 2.2.3. 和頻生成…………………………………………..….31 2.2.4. 相位匹配……………………………………...………33 2.2.5. 準相位匹配………………………………...…………35 2.2.6. 波導中的二倍頻生成…………………………...……37 2.3 量子態………………………………………………..……..39 2.3.1. 真空態……………………………………………..….39 2.3.2. 相干態…………………………………..…………….40 2.3.3. 不確定性原理…………………………………..…….41 2.3.4. 壓縮態………………………………………..……….42 2.3.5. 參量下轉換………………………………...…………44 2.3.6. 平衡零差檢測………………………………..……….46 第三章 晶片設計與模擬………………………...…………48 3.1. 參數測試…………………………………………………....48 3.2. 波導模擬………………………………………………..…..49 3.3. 晶片設計…………………………………………………....53 第四章 晶片製程…………………………………...………54 4.1. 極化反轉製程………………………………………………54 4.2. 退火質子交換製程…………………………………………60 4.3. 端面拋光製程………………………………………………63 第五章 實驗結果與分析………………………………...…65 5.1. 古典量測……………………………………………………65 5.1.1. 波導損耗量測……………………………………..….65 5.1.2. 二倍頻轉換效率量測………………………………...67 5.1.3. 非線性增益量測……………………………………...68 5.2. 壓縮態量測…………………………………………………70 5.2.1. 量測架構……………………………………………...70 5.2.2. 壓縮態………………………………………………...72 第六章 結論與未來工作………………………………...…77 6.1. 結論………………………………………………................77 6.2. 未來工作…………………………………………………....77 第七章 參考文獻……………………………………...……78

    [1.1] T. H. Maiman, "Phys. Rev. Letters 4, 564 (1960).
    [1.2] Robert G. Hunsperger, "Integrated Optics: Theory and Technology," 6th ed., Springer-Verlag New York, (2009).
    [1.3] E. Miller, "THE BELL SYSTEM technical journal, vol. 48, no. 7, pp. 2059-2069, (1969).
    [1.4] S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, V. M. Shalaev, “Material platforms for integrated quantum photonics,” Opt. Mater. Express 7, 111–132 (2017).
    [1.5] Galan Moody, et al., "2022 Roadmap on integrated quantum photonics," J. Phys. Photonics 4 012501 (2022).
    [1.6] L. Thylén, L. Wosinski, “Integrated photonics in the 21st century,” Photon. Res. 2, 75–81 (2014).
    [1.7] Jake Bass, Brandon Brea, Huong Tran, Wei Du, Richard Soref, Shui-Qing Yu, “The Effect of Two-Photon Absorption on the Dynamic Range of Integrated Microwave Photonics Links,” SPIE OPTO, Silicon Photonics XV; 112851C (2020).
    [1.8] J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
    [1.9] Guanyu Chen, Nanxi Li, Jun Da Ng, Hong-Lin Lin, Yanyan Zhou, Yuan Hsing Fu, Lennon Y. T. Lee, Yu Yu, Ai-Qun Liu, Aaron J. Danner, "Advances in lithium niobate photonics: development status and perspectives," Advanced Photonics 4, 034003 (2022).
    [1.10] L. Arizmendi, "Photonic applications of lithium niobate crystals," phys. stat. sol. (a) 201, 253-283 (2004).
    [1.11] O. Alibart et al., "Quantum photonics at telecom wavelengths based on lithium niobate waveguides," Journal of Optics 18, 104007 (2016).
    [1.12] Marco Bazzan, Cinzia Sada, "Optical waveguides in lithium niobate: Recent developments and applications," Appl. Phys. Rev. 2, 040603 (2015).
    [1.13] P. Ganguly, "Modelling of titanium indiffused lithium niobate channel waveguide bends: a matrix approach," Opt. Commun. 155, 125-134 (1998).
    [1.14] Di Zhu, Linbo Shao, Mengjie Yu, Rebecca Cheng, Boris Desiatov, C. J. Xin, Yaowen Hu, Jeffrey Holzgrafe, Soumya Ghosh, Amirhassan Shams-Ansari, Eric Puma, Neil Sinclair, Christian Reimer, Mian Zhang, Marko Lončar, "Integrated photonics on thin-film lithium niobate," Adv. Opt. Photon. 13, 242-352 (2021).
    [1.15] P. F. Bordui, R. G. Norwood, C. D. Bird, J. T. Carella, "J. Appl. Phys. 78, 4647 (1995).
    [1.16] G. J. Edwards, M. Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate," Opt. Quantum Electron. 16, 373–375 (1984).
    [2.1] J.-J. Yin, F. Lu, X.-B. Ming, Y.-J. Ma, M.-B. Huang, "J. Appl. Phys. 108, 033105 (2010).
    [2.2] F. Chen, X.-L. Wang, K.-M. Wang, "Opt. Mater. 29, 1523 (2007).
    [2.3] Hui Hu, Fei Lu, Xue Lin Wang, Feng Chen, Ke Ming Wang, "Low-loss optical waveguides and Y-branch splitters in lithium niobate fabricated by MeV oxygen ions with low dose," Opt. Express 20, 21114-21118 (2012).
    [2.4] R. V. Schmidt, I. P. Kaminow, "Metal-Diffused Optical Waveguides in LiNbO3," Appl. Phys. Lett. 25, 458 (1974).
    [2.5] S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, L. Riviere, "Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters," J. Lightwave Technol. 5, 700-708 (May 1987).
    [2.6] W. K. Burns, P. H. Klein, E. J. West, L. E. Plew, "Ti diffusion in Ti:LiNbO3 planar and channel optical waveguides," J. Appl. Phys. 1 October (1979).
    [2.7] F. Laurell, J. Webjorn, G. Arvidsson, J. Holmberg, "Wet etching of proton-exchanged lithium niobate-a novel processing technique," J. Lightwave Technol. 10, 1606-1609 (Nov. 1992).
    [2.8] H. Hu, R. Ricken, W. Sohler, R. B. Wehrspohn, "Lithium Niobate Ridge Waveguides Fabricated by Wet Etching," IEEE Photon. Technol. Lett. 19, 417-419 (15 March 2007).
    [2.9] I. S. Azanova, D. I. Shevtsov, A. V. Zhundrikov, V. I. Kichigin, I. V. Petukhov, A. B. Volyntsev, "Chemical Etching Technique for Investigations of a Structure of Annealed and Unannealed Proton Exchange Channel LiNbO3 Waveguides," Ferroelectrics 374, 110-121 (2008).
    [2.10] P. De Nicola et al., "Fabrication of Smooth Ridge Optical Waveguides in LiNbO3 by Ion Implantation-Assisted Wet Etching," J. Lightwave Technol. 31, 1482-1487 (1 May 2013).
    [2.11] H. Hu, R. Ricken, W. Sohler, "Lithium niobate photonic wires," Opt. Express 17, 24261-24268 (2009).
    [2.12] Mian Zhang, Cheng Wang, Rebecca Cheng, Amirhassan Shams-Ansari, Marko Lončar, "Monolithic ultra-high-Q lithium niobate microring resonator," Optica 4, 1536-1537 (2017).
    [2.13] Xue Peng Li, Kai Xin Chen, Zhe Feng Hu, "Low-loss bent channel waveguides in lithium niobate thin film by proton exchange and dry etching," Opt. Mater. Express 8, 1322-1327 (2018).
    [2.14] S. Winnall, S. Winderbaum, "Lithium niobate reactive ion etching," DTIC Document (2000).
    [2.15] M. Sridhar, D. K. Maurya, J. R. Friend, L. Y. Yeo, "Focused ion beam milling of microchannels in lithium niobite," Biomicrofluidics 6, 012819 (2012).
    [2.16] Nadège Courjal et al., "High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing," J. Phys. D: Appl. Phys. 44, 305101 (2011).
    [2.17] Yo Takigawa, Eiji Higurashi, Tetsuya Kawanishi, Tanemasa Asano, "Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method," Opt. Express 22, 27733-27738 (2014).
    [2.18] Martin F. Volk, Sergiy Suntsov, Christian E. Rüter, Detlef Kip, "Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing," Opt. Express 24, 1386-1391 (2016).
    [2.19] V. Gericke, P. Hertel, E. Kra¨tzig, J.P. Nisius, R. Sommerfeld, "Appl. Phys. B 44, 155 (1987).
    [2.20] J. L. Jackel, D. H. Olson, A. M. Glass, "Optical damage resistance of monovalent ion diffused LiNbO3 and LiTaO3 waveguides," J. Appl. Phys. 52, 4855–4856 (1 July 1981).
    [2.21] Uma B. Ramabadran, Howard E. Jackson, Joseph T. Boyd, "Raman microprobe characterization of photorefractive nonlinearity in Ti:LiNbO3 channel waveguides," Appl. Phys. Lett. 58, 672–674 (18 February 1991).
    [2.22] T. Fujiwara, S. Sato, H. Mori, "Wavelength dependence of photorefractive effect in Ti‐indiffused LiNbO3 waveguides," Appl. Phys. Lett. 54, 975–977 (13 March 1989).
    [2.23] J. Olivares, E. Diéguez, F. J. López, J. M. Cabrera, "Fe ions in proton‐exchanged LiNbO3 waveguides," Appl. Phys. Lett. 61, 624–626 (10 August 1992).
    [2.24] Carnicero J, Carrascosa M, Mendez A, García-Cabañes A, Cabrera JM, "Optical damage control via the Fe2+/Fe3+ ratio in proton-exchanged LiNbO3 waveguides," Opt. Lett. 32, 2294-2296 (2007).
    [2.25] R. Göring, Z. Yuan-Ling, S. Steinberg, "Appl. Phys. A 55, 97 (1992).
    [2.26] Takumi Fujiwara, Xiaofan Cao, Ramakant Srivastava, Ramu V. Ramaswamy, "Photorefractive effect in annealed proton‐exchanged LiNbO3 waveguides," Appl. Phys. Lett. 61, 743-745 (17 August 1992).
    [2.27] Steinberg S, Göring R, Hennig T, Rasch A, "Comparison of photorefractive-index changes in annealed-proton-exchanged channel waveguides in MgO-doped and congruent LiNbO(3)," Opt. Lett. 20, 683-685 (1995).
    [2.28] Yukiko Kondo, Satoshi Miyaguchi, Atsushi Onoe, Yoichi Fujii, "Quantitatively measured photorefractive sensitivity of proton-exchanged lithium niobate, proton-exchanged magnesium oxide-doped lithium niobate, and ion-exchanged potassium titanyl phosphate waveguides," Appl. Opt. 33, 3348-3352 (1994).
    [2.29] Takumi Fujiwara, Ramakant Srivastava, Xiaofan Cao, Ramu V. Ramaswamy, "Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides," Opt. Lett. 18, 346-348 (1993).
    [2.30] J. L. Jackel, C. E. Rice, J. J. Veselka, "Proton exchange for high‐index waveguides in LiNbO3," Appl. Phys. Lett. 41, 607-608 (1 October 1982).
    [2.31] D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, R. M. De La Rue, "Characterization of proton‐exchange slab optical waveguides in z‐cut LiNbO3," J. Appl. Phys. 54, 6218-6220 (1 November 1983).
    [2.32] Hou WX, Chong TC, "Characterization of annealed, proton-exchanged optical waveguides in ZnO:LiNbO3 crystal," Appl. Opt. 36, 5083-5088 (20 July 1997).
    [2.33] Hagner G, Bachmann T, "Refractive index profiles and exchange ratios of proton-exchanged waveguides in congruent and MgO-doped LiNbO3," Phys. Stat. Sol. (A) 165, 205-212 (1998).
    [2.34] Pun EY, Loi KK, Chung PS, "Experimental studies of proton-exchanged waveguides in lithium niobate using toluic acid," Proceedings of SPIE - The International Society for Optical Engineering 1583, 64-70 (1991).
    [2.35] De Micheli M, Botineau J, Neveu S, Sibillot P, Ostrowsky DB, Papuchon M, "Extension of second-harmonic phase-matching range in lithium niobate guides," Opt. Lett. 8, 116-118 (1 February 1983).
    [2.36] W. J. Liao, X. Chen, F. Chen, Y. Chen, Y. Xia, Y. Chen, "Proton-exchanged optical waveguides fabricated by glutaric acid," Optics & Laser Technology 36, 603-606 (2004).
    [2.37] E. Y. B. Pun, Y. O. Tse, P. S. Chung, "Proton-exchanged optical waveguides in LiNbO3 using octanoic acid," IEEE Photonics Technology Letters 3, 522-523 (June 1991).
    [2.38] C. C. Ziling, L. Pokrovskii, N. V. Terpugov et al., "Optical and structural properties of annealed PE:LiNbO3 waveguides formed with pyrophosphoric and benzoic acids," J. Appl. Phys. 73, 3125 (1993).
    [2.39] Y. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, "Optical and x-ray characterization of HxLi1−xNbO3 phases in proton-exchanged LiNbO3 optical waveguides," J. Appl. Phys. 84, 2411–2419 (1998).
    [2.40] J. Rams, J. M. Cabrera, "Characterization of LiNbO3 waveguides fabricated by proton exchange in water," Appl. Phys. A 81, 205–208 (2005).
    [2.41] I. V. Il’ichev, A. S. Kozlov, P. V. Gaenko, A. V. Shamray, "Optimization of the proton-exchange technology for fabricating channel waveguides in lithium niobate crystals," Quantum Electron. 39, 98–104 (2009).
    [2.42] Anna Smirnova, Irina Azanova, Ivan Baturin, Andrey Akhmatkhanov, Michael Spirin, Max Belokrylov, "Effect of proton exchange waveguide on domain kinetics of lithium niobate," in Proceedings of the International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM, 234-236 (2013).
    [2.43] Lutong Cai, Yun Kang, Hui Hu, "Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film," Opt. Express 24, 4640-4647 (2016).
    [2.44] Alfonso C. Cino, Stefano Riva Sanseverino, Marc P. De Micheli, Kasem El Hadi, Fernando Cusso, Gines Lifante, "Proton exchange, anneal proton exchange, and reverse proton exchange waveguides in Er:LiNbO3," Proc. SPIE 3280, Rare-Earth-Doped Devices II, 3280 (15 April 1998).
    [2.45] Makoto Minakata, Kouichi Kumagai, Shojiro Kawakami, "Lattice constant changes and electro-optic effects in proton-exchanged LiNbO3 optical waveguides," Appl. Phys. Lett. 49, 992-994 (20 October 1986).
    [2.46] R. A. Becker, "Comparison of guided-wave interferometric modulators fabricated on LiNbO3 via Ti indiffusion and proton exchange," Appl. Phys. Lett. 43, 131-133 (15 July 1983).
    [2.47] T. Suhara, H. Tazaki, H. Nishihara, "Measurement of reduction in SHG coefficient of LiNbO3 by proton exchanging," Electronics Letters 25, 1326-1328 (28 September 1989).
    [2.48] F. Laurell, M. G. Roelofs, H. Hsiung, "Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides," Appl. Phys. Lett. 60, 301-303 (20 January 1992).
    [2.49] Alfredo Yi-Yan, "Index instabilities in proton-exchanged LiNbO3 waveguides," Appl. Phys. Lett. 42, 633-635 (15 April 1983).
    [2.50] Janet Lehr Jackel, Catherine E Rice, "Short-And Long-Term Stability In Proton Exchanged Lithium Niobate Waveguides," Proc. SPIE 0460, Processing of Guided Wave Optoelectronic Materials I, 26 September (1984).
    [2.51] P. G. Suchoski, T. K. Findakly, F. J. Leonberger, "Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation," Opt. Lett. 13, 1050-1052 (1988).
    [2.52] De Micheli, M. P., "Fabrication and Characterization of Proton Exchanged Waveguides in Periodically Poled Congruent Lithium Niobate," Ferroelectrics 340, 49-62 (2006).
    [2.53] Mahmoud M. Abouelleil, Fred J. Leonberger, "Waveguides in Lithium Niobate," J. Am. Ceram. Soc. 72, 1311-1321 (1989).
    [2.54] Yuri N. Korkishko, Vyacheslav A. Fedorov, Oksana Y. Feoktistova, "LiNbO3 Optical Waveguide Fabrication by High-Temperature Proton Exchange," J. Lightwave Technol. 18, 562- (2000).
    [2.55] J. Rams, F. Agulló-Rueda, J. M. Cabrera, "Structure of high index proton exchange LiNbO3 waveguides with undegraded nonlinear optical coefficients," Appl. Phys. Lett. 71, 3356-3358 (1997).
    [2.56] Krishnan R. Parameswaran, Roger K. Route, Jonathan R. Kurz, Rostislav V. Roussev, Martin M. Fejer, and Masatoshi Fujimura, "Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate," Opt. Lett. 27, 179-181 (2002).
    [2.57] Katia Gallo, Marc De Micheli, and Pascal Baldi, "Parametric fluorescence in periodically poled LiNbO 3 buried waveguides," Applied Physics Letters 80, 4492 (2002).
    [2.58] C.E. Rice, "The structure and properties of Li1−xHxNbO3," JOURNAL OF SOLID STATE CHEMISTRY 64, 188-199 (1986).
    [2.59] Vyacheslav A. Fedorov, Yuri N. Korkishko, "Relationships between crystal lattice parameters and optical properties of proton-exchanged lithium niobate waveguides," in Proc. SPIE 2401, Functional Photonic Integrated Circuits, 2401, 17 March (1995).
    [2.60] Korkishko, Yu & Fedorov, Vyacheslav. "Structural phase diagram of Hx/Li1-xNbO3 waveguides: The correlation between optical and structural properties," Selected Topics in Quantum Electronics, IEEE Journal of. 2. 187 - 196. (1996).
    [2.61] M. M. Howerton, W. K. Burns, P. R. Skeath and A. S. Greenblatt, "Dependence of refractive index on hydrogen concentration in proton exchanged LiNbO3," in IEEE Journal of Quantum Electronics, vol. 27, no. 3, pp. 593-601, March (1991).
    [2.62] Gustavo R. Paz-Pujalt, David D. Tuschel, Gabriel Braunstein, Thomas Blanton, S. Tong Lee, Lillie M. Salter, "Characterization of proton exchange lithium niobate waveguides," J. Appl. Phys. 76, 3981-3987 (1994).
    [2.63] H. C. Casey, Chang-Ho Chen, J. M. Zavada, S. W. Novak, "Analysis of hydrogen diffusion from proton-exchanged layers in LiNbO3," Appl. Phys. Lett. 63, 718-720 (1993).
    [2.64] J. M. Zavada, H. C. Casey, Chang-Ho Chen, A. Loni, "Correlation of refractive index profiles with substitutional hydrogen concentrations in annealed proton-exchanged LiNbO3 waveguides," Appl. Phys. Lett. 62, 2769-2771 (1993).
    [2.65] J. M. Zavada, H. C. Casey, R. J. States, S. W. Novak, A. Loni, "Correlation of substitutional hydrogen to refractive index profiles in annealed proton-exchanged Z- and X-cut LiNbO3," J. Appl. Phys. 77, 2697-2708 (1995).
    [2.66] Yu. N. Korkishko, V. A. Fedorov, "Relationship between refractive indices and hydrogen concentration in proton exchanged waveguides," J. Appl. Phys. 82, 1010-1017 (1997).
    [2.67] Nikolopoulos, J.; Yip, G.L., "Theoretical modeling and characterization of annealed proton-exchanged planar waveguides in z-cut LiNbO3," J. Lightwave Technol. 9, 864-870 (1991).
    [2.68] M. L. Bortz and M. M. Fejer, "Annealed proton-exchanged LiNbO3 waveguides," Opt. Lett. 16, 1844-1846 (1991)
    [2.69] J. M. M. M. de Almeida and A. M. P. P. Leite, “Proton exchanged waveguides
    in LiNbO3: characterization and design methodology,” Proceedings of SPIE 6123, 612,319–1–613,219–12 (2006).
    [2.70] Jose Manuel M. M. de Almeida "Design methodology of annealed H+ waveguides in ferroelectric LiNbO3," Optical Engineering 46(6), 064601 (1 June 2007).
    [2.71] X. F. Cao, R. V. Ramaswamy and R. Srivastava, "Characterization of annealed proton exchanged LiNbO/sub 3/ waveguides for nonlinear frequency conversion," in Journal of Lightwave Technology, vol. 10, no. 9, pp. 1302-1313, Sept. 1992.
    [2.72] Delong Zhang, Bo Wu, Yuanguo Xie, Guilan Ding, Yuming Cui, and Caihe Chen, "Theoretical Study of Annealed Proton-Exchanged Nd:LiNbO3 Channel Waveguide Lasers With Variational Method," J. Lightwave Technol. 19, 1560- (2001).
    [2.73] R. Roussev, Xiuping Xie, K. Parameswaran and M. M. Fejer, "Accurate semi-empirical model for annealed proton exchanged waveguides in z-cut lithium niobate," The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003., Tucson, AZ, USA, 2003, pp. 338-339 vol.1.
    [2.74] M. L. Bortz, L. A. Eyres, M. M. Fejer; Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides. Appl. Phys. Lett. 26 April 1993; 62 (17): 2012–2014.
    [2.75] Loni, Armando & De La Rue, Richard & Winfield, John. (1988). Very Low-Loss Proton Exchanged LiNbO3 Waveguides With A Substantially Restored Electro Optic Effect.
    [2.76] P. G. Suchoski, T. K. Findakly, and F. J. Leonberger, "Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation," Opt. Lett. 13, 1050-1052 (1988).
    [2.77] F. Laurell, M. G. Roelofs, H. Hsiung; Loss of optical nonlinearity in proton‐exchanged LiNbO3 waveguides. Appl. Phys. Lett. 20 January 1992; 60 (3): 301–303.
    [2.78] Hadi, Kasem El et al. “Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides.” Journal of The Optical Society of America B-optical Physics 14 (1997): 3197-3203.
    [2.79] X. Cao, R. Srivastava, R. V. Ramaswamy and J. Natour, "Recovery of second-order optical nonlinearity in annealed proton-exchanged LiNbO3," in IEEE Photonics Technology Letters, vol. 3, no. 1, pp. 25-27, Jan. 1991.
    [2.80] R. W. Boyd, Nonlinear Optics, 4th Edition ed. Academic Press, 2020, p. 65~p86.
    [2.81] 1. Risk WP, Gosnell TR, Nurmikko AV. Compact Blue-Green Lasers. Cambridge University Press; p51~p56, (2003)
    [2.82] . L. S. Braunstein and P. Van Loock, "Quantum information with continuous variables," Reviews of Modern Physics, vol. 77, no. 2, pp. 513-577, 2005.
    [2.83] L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, "Generation of squeezed states by parametric down conversion," Phys Rev Lett, vol. 57, no. 20, pp. 2520-2523, Nov 17 1986.
    [2.84] G. L. Mansell, "Squeezed light sources for current and future interferometric gravitational-wave detectors", PhD thesis, Australian National University, 2018.
    [2.85] D. F. Walls and G. J. Milburn, Quantum Optics, 2nd Edition ed. Springer, 2008, p. 437.
    [2.86] M. Fox, Quantum Optics: An Introduction. Oxford University Press, 2006, p. 400.
    [2.87] Axel Schonbeck,"Compact squeezed-light source at 1550 nm", PhD thesis, University of Hamburg, 2018.
    [2.88] C. Gerry and P. Knight, Introductory Quantum Optics. Cambridge University Press, 2004, p. 317.
    [2.89] M. S. Stefszky,"Generation and Detection of Low-Frequency Squeezing for Gravitational-Wave Detection", PhD thesis, Australian National University,2012.
    [3.1] Ming-Hsien Chou, "OPTICAL FREQUENCY MIXERS USING THREE-WAVE MIXING FOR OPTICAL FIBER COMMUNICATIONS," PhD thesis,  Stanford University ProQuest Dissertations Publishing,  (1999).
    [3.2] Roussev, Rostislav V.. “Optical-frequency mixers in periodically poled lithium niobate: Materials, modeling and characterization,” (2007).
    [3.3] Oleksandr Stepanenko. "Towards proton exchanged quantum wires and highly confining integrated circuits on LiNbO3," Université Nice Sophia Antipolis, 2013. English.
    [4.1]. G. D. Miller,"Periodically poled lithium niobate: modeling, fabrication, andnonlinear-optical performance",PhD thesis,Stanford university,(1998)。
    [5.1]. Regener, R., Sohler, W. Loss in low-finesse Ti:LiNbO3 optical waveguide resonators. Appl. Phys. B 36, 143–147 (1985).
    [5.2]. T. Hirano, K. Kotani, T. Ishibashi, S. Okude, and T. Kuwamoto, "3 dB squeezing by single-pass parametric amplification in a periodically poled KTiOPO4 crystal," Opt. Lett. 30, 1722-1724 (2005).
    [5.3]. M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn
    Phys. Rev. Applied 7, 044026 (2017).
    [5.4]. akahiro Kashiwazaki, Taichi Yamashima, Koji Enbutsu, Takushi Kazama, Asuka Inoue, Kosuke Fukui, Mamoru Endo, Takeshi Umeki, Akira Furusawa; Over-8-dB squeezed light generation by a broadband waveguide optical parametric amplifier toward fault-tolerant ultra-fast quantum computers. Appl. Phys. Lett. 5 June 2023; 122 (23): 234003.
    [6.1]. N. Takanashi et al., "4-dB Quadrature Squeezing With Fiber-Coupled PPLN Ridge Waveguide Module," in IEEE Journal of Quantum Electronics, vol. 56, no. 3, pp. 1-5, June 2020, Art no. 6000100.
    [6.2]. Takahiro Kashiwazaki,Taichi Yamashima, Naoto Takanashi, Asuka Inoue,Takeshi Umeki, Akira Furusawa; Fabrication of low-loss quasi-single-mode PPLN waveguide and its application to a modularized broadband high-level squeezer. Appl. Phys. Lett. 20 December 2021; 119 (25): 251104.
    [6.3]. Takahiro Kashiwazaki, Naoto Takanashi, Taichi Yamashima, Takushi Kazama, Koji Enbutsu, Ryoichi Kasahara, Takeshi Umeki, Akira Furusawa; Continuous-wave 6-dB-squeezed light with 2.5-THz-bandwidth from single-mode PPLN waveguide. APL Photonics 1 March 2020; 5 (3): 036104.
    [6.4]. Francesco Lenzini et al. Integrated photonic platform for quantum information with continuous variables.Sci. Adv.4, eaat9331(2018).
    [6.5]. F. Mondain, T. Lunghi, A. Zavatta, E. Gouzien, F. Doutre, M. De Micheli, S. Tanzilli, and V. D’Auria, "Chip-based squeezing at a telecom wavelength," Photon. Res. 7, A36-A39 (2019).

    QR CODE
    :::