| 研究生: |
陳念慈 Nien-tzu Chen |
|---|---|
| 論文名稱: |
探討酵母菌細胞質 glutamyl-tRNA synthetase 的粒腺體標的訊號 Identification of the mitochondrial targeting signal of yeast glutamyl-tRNA synthetase |
| 指導教授: |
王健家
Chien-chia Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 粒腺體標的訊號 |
| 外文關鍵詞: | GluRS, MTS |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
酵母菌Saccharomyces cerevisiae中cytoplasmic glutamyl-tRNA synthetase (cGluRS) 是由細胞核基因GUS1解碼而來。在細胞質中cGluRS會將Glu接到相對應的tRNAGlu形成Glu-tRNAGlu,但是最近的研究報告指出cGluRS也會被送到粒腺體中參與Gln-tRNAGln的形成。在粒腺體中cGluRS首先會將Glu接到tRNAGln形成Glu-tNRAGln,再藉由Glu-tNRAGln amidotransferase的轉胺作用形成正確的Gln-tRNAGln。先前,我們實驗室指出,在細胞質中與cGluRS結合的分子Arc1p有粒腺體標的訊號,因此cGluRS有可能是藉由Arc1p而進入粒腺體的,經由點突變的實驗我們發現cGluRS和Arc1p各自攜帶粒腺體標的訊號,不需靠彼此交互作用而進入粒腺體。cGluRS的粒腺體標的訊號位於其胺基端1-29胺基酸。相反地,在酵母菌Schizosaccharomyces pombe及Candida albicans的cGluRS中並沒有發現類似的粒腺體標的訊號。而在Pichia guilliermodii、Candida albicans、Schizosaccharomyces pombe這三株酵母菌的Arc1p也沒有粒腺體標的訊號。
In Saccharomyces cerevisiae, the cytoplasmic glutamyl-tRNA synthetase (cGluRS) is encoded by GUS1. In cytoplasm, cGluRS attaches Glu to the cognate tRNAGlu to form Glu-tRNAGlu. In addition to the cytoplasmic activity, cGluRS can enter the mitochodria to synthesize Glu-tNRAGln (a misacylated product), which is then converted to correct Gln-tRNAGln by Glu-tNRAGln amidotransferase. A pervious study in our lab indicated that Arc1p, which binds cGluRS in cytoplasm, also has a mitochondrial targeting signal. Our results showed that cGluRS and Arc1p each carry a mitochondrial targeting signal and thus can enter the mitochondria by itself. Next, we used the cytoplasmic form of valyl-tRNA synthetase as the reporter gene to map the mitochondrial targeting signal of cGluRS. As it turned out, this signal was embedded in the N-terminal amino acids 1-29 of cGluRS. In contrast, no mitochondrial targeting signal was found in Schizosaccharomyces pombe or Candida albicans GluRS. Moreover, Arc1p from Pichia guilliermodii, Candida albicans, and Schizosaccharomyces pombe does not possess a mitochondrial targeting signal.
Burbaum, J.J. and P.Schimmel. 1991. Structural relationships and the classification of aminoacyl-tRNA synthetases. J. Biol. Chem. 266: 16965-16968.
Cahuzac, B., E.Berthonneau, N.Birlirakis, E.Guittet, and M.Mirande. 2000. A recurrent RNA-binding domain is appended to eukaryotic aminoacyl-tRNA synthetases. EMBO J. 19: 445-452.
Carter, C.W., Jr. 1993. Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu. Rev. Biochem. 62: 715-748.
Chatton, B., P.Walter, J.P.Ebel, F.Lacroute, and F.Fasiolo. 1988. The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J. Biol. Chem. 263: 52-57.
Dietrich, A., J.H.Weil, and L.Marechal-Drouard. 1992. Nuclear-encoded transfer RNAs in plant mitochondria. Annu. Rev. Cell Biol. 8: 115-131.
Feng, L., D.Tumbula-Hansen, H.Toogood, and D.Soll. 2003. Expanding tRNA recognition of a tRNA synthetase by a single amino acid change. Proc. Natl. Acad. Sci. U. S. A 100: 5676-5681.
Frechin, M., B.Senger, M.Braye, D.Kern, R.P.Martin, and H.D.Becker. 2009. Yeast mitochondrial Gln-tRNA(Gln) is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS. Genes Dev. 23: 1119-1130.
Gakh, O., P.Cavadini, and G.Isaya. 2002. Mitochondrial processing peptidases. Biochim. Biophys. Acta 1592: 63-77.
Galani, K., H.Grosshans, K.Deinert, E.C.Hurt, and G.Simos. 2001. The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p. EMBO J. 20: 6889-6898.
Golinelli-Cohen, M.P. and M.Mirande. 2007. Arc1p is required for cytoplasmic confinement of synthetases and tRNA. Mol. Cell Biochem. 300: 47-59.
Hughes, T.R., M.J.Marton, A.R.Jones, C.J.Roberts, R.Stoughton, C.D.Armour, H.A.Bennett, E.Coffey, H.Dai, Y.D.He, M.J.Kidd, A.M.King, M.R.Meyer, D.Slade, P.Y.Lum, S.B.Stepaniants, D.D.Shoemaker, D.Gachotte, K.Chakraburtty, J.Simon, M.Bard, and S.H.Friend. 2000. Functional discovery via a compendium of expression profiles. Cell 102: 109-126.
Karanasios, E., H.Simader, G.Panayotou, D.Suck, and G.Simos. 2007. Molecular determinants of the yeast Arc1p-aminoacyl-tRNA synthetase complex assembly. J. Mol. Biol. 374: 1077-1090.
Martinis, S.A., P.Plateau, J.Cavarelli, and C.Florentz. 1999. Aminoacyl-tRNA synthetases: a new image for a classical family. Biochimie 81: 683-700.
Martinis, S.A. and P.Schimmel. 1993. Microhelix aminoacylation by a class I tRNA synthetase. Non-conserved base pairs required for specificity. J. Biol. Chem. 268: 6069-6072.
Mirande, M. 1991. Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog. Nucleic Acid Res. Mol. Biol. 40: 95-142.
Mulero, J.J., J.K.Rosenthal, and T.D.Fox. 1994. PET112, a Saccharomyces cerevisiae nuclear gene required to maintain rho+ mitochondrial DNA. Curr. Genet. 25: 299-304.
Pelchat, M. and J.Lapointe. 1999. Aminoacyl-tRNA synthetase genes of Bacillus subtilis: organization and regulation. Biochem. Cell Biol. 77: 343-347.
Ribas de, P.L. and P.Schimmel. 2001. Two classes of tRNA synthetases suggested by sterically compatible dockings on tRNA acceptor stem. Cell 104: 191-193.
Simos, G., A.Sauer, F.Fasiolo, and E.C.Hurt. 1998. A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases. Mol. Cell 1: 235-242.
Whelihan, E.F. and P.Schimmel. 1997. Rescuing an essential enzyme-RNA complex with a non-essential appended domain. EMBO J. 16: 2968-2974.
Yano, M., K.Terada, and M.Mori. 2004. Mitochondrial import receptors Tom20 and Tom22 have chaperone-like activity. J. Biol. Chem. 279: 10808-10813.
葉曜榮 (2008)探討酵母菌Glutaminyl-tRNA synthetase對於粒腺體功能之影響。中央大學碩士論文 84頁