| 研究生: |
王維鴻 Wei-hung Wang |
|---|---|
| 論文名稱: |
利用電化學加工配合動力拉提法製作針錐微電極之參數分析 The Parametric Analysis in Manufacturing Micro Conical-shaped Electrodes by Electrochemical Machining Accompanying with Dynamic Drawing Method |
| 指導教授: |
洪勵吾
Lih-wu Hourng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 微電極 、微電化學加工 、針錐 、鎢棒 、動力拉提 |
| 外文關鍵詞: | dynamic drawing, conical-shaped, tungsten, micro electrode, electrochemical micro-machining |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微機電系統技術是目前科技發展的重心,近年來電化學因為可應用在製作微型元件上,所以又受到微加工技術的高度注意,此類的電化學加工被稱為微電化學加工,屬於非傳統加工。其優勢具有可加工任何金屬材料,工件表面無殘留應力,工具電極不易損耗等。在微電化學加工上,若要製作微結構元件,則需要更微細之加工電極,故本文將探討如何製作微細之針錐狀微電極。
本文研究目的為利用電化學加工配合動力拉提法製作針錐微電極,且使用單一因子法分析加工參數(如:操作電壓、電解液濃度、陽極長度、拉提速率、陰極面積、電極旋轉速率)對於製作針錐微電極之影響性,得知當操作電壓和電解液改變時會影響加工表面精度,且陽極浸入長度、拉提速率及電極旋轉速率對於加工微電極成型之錐度與深寬比有重要的影響性,本文在參數範圍內找出一組較合宜之參數。
將直徑510 μm的鎢棒製作成針錐狀電極,其加工時間約為20分鐘,刃長大約3.2 mm,前端針尖之直徑小於15 μm,且錐度極小及深寬比大。且將此針錐狀微電極應用在微電化學工加鑽孔上,其微孔洞之直徑與精度凸顯此針錐微電極在微電化學加工技術的貢獻與突破。
The technology of MEMS has being the main part of current technology. Recently ECM has been applied in micro-components, and it gets high attention from the technology of micro manufacture. This sort of electrochemical machining called EMM belongs to the non-traditional machining.
The ECM not only possesses the capability of machining all kinds of metal materials but also remains no residual stress on its surface. More over, the electrode of tool couldn’t easily break. In the process of EMM, to manufacture micro-structures, more tiny micro electrodes are needed in machining. This thesis will intends to investigate the manufacture of a micro conical-shaped electrode.
The purpose of this thesis is to use electrochemical machining accompanying with dynamic drawing method to manufacture conical-shaped electrodes. We discussed and analyzed the effect of working parameters, such as applied voltage, electrolyte concentration, anode length, draw up rate, cathode area, rotational rate of electrode, on the conical-shaped electrode.
Brief description about the experimental results is needed. A tungsten rod with diameter of 510 μm is need to manufacture the micro conical-shaped electrode. The resulting electrode has edge’s length of 3.2 mm, and the diameter of apex is less than 15 μm. Besides, the cone angle is extremely tiny and the aspect ratio is high.
We will use this micro conical-shaped electrode in the EMM drilling, and the resulting micro hole’s diameter and precision shows the potential application of the micro conical-shaped electrode in EMM.
1. 楊龍杰編著,認識微機電,滄海書局(2001).
2. D.J. Nagel and M.E. Zaghloul, MEMS : Micro Techanology: Mega Impact, IEEE Circuit Devices Magazine, Vol. 28, pp. 14-25 (2001).
3. Nadim Maluf 著,李世鴻譯著,微機電系統工程,五南圖書(2003).
4. J.A. McGeough, Principles of Electrochemical Machining, Chapman Hall, London. (1974).
5. S. H. Ahn, S. H. Ryu, D. K. Choi and C. N. Chua, Electro-chemical Micro Drilling Using Ultra Short Pulses, Precision Engineering, Vol. 28, pp. 129-34 (2004).
6. X. Jiawena, Y. Naizhang, T. Yangxin and K.P. Rajurkar, The modelling of NC-electrochemical Contour Evolution Machining Using a Rotary Tool-cathode, Journal of Materials Processing Technology, Vol. 159, pp. 272-277 (2005).
7. 木本康雄著,賴耿陽譯著,精密加工之電學應用,復漢出版社(1982).
8. 佐藤敏一著,賴耿陽譯著,金屬腐蝕加工技術, 復漢出版社(1986).
9. Y. M. Lim and S. H. Kim, An Electrochemical Fabrication Method for Extremely Thin Cylindrical Micropin, International Journal of Machine Tools & Manufacture, Vol. 41, pp. 2287-2296 (2001).
10. Y. M. Lim, H. J. Lim, J. R. Liu and S. H. Kim, Fabrication of Cylindrical Micropins with Various Diameters Using DC Current Density Control, Journal of Materials Processing Technology, Vol. 141, pp. 251-255 (2003).
11. Z. Wang, B. Zhu and G. Cao, Fabricating Microelectrode by Electrochemical Micromachining, Proceedings of SPIE, Vol. 6041, pp. 1-5 (2006).
12. 陳裕豐,高潔淨閥件之流道表面處理-電解拋光(EP)技術,機械工業雜誌,198 期, 230-240 頁,9 月,(1999).
13. S. H. Choi, S.H. Ryu and C.N. Chu, Fabrication of WC Micro-shaft by Using Electrochemical Etching, International Journal of Advanced Manufacture Technology, Vol. 31, pp. 682-687 (2007).
14. E. S. Lee, S. Y. Baek, and C. R. Cho, A study of the Characteristics for Electrochemical Micromachining with Ultrashort Voltage Pulses, International Journal of Advanced Manufacture Technology, Vol. 31, pp. 762-769 (2007).
15. D. Zhu, K. Wang and N. S. Qu, Micro Wire Electrochemical Cutting by Using in Situ Fabricated Wire Electrode, CIRP Annals - Manufacturing Technology, Vol. 56, pp. 241-244 (2007).
16. R. Hobara, S. Yoshimoto, and S. Hasegawa, Dynamic Electrochemical Etching Technique for Tungsten Tips Suitable for Multi-tip Scanning Tunneling Microscopes, Journal of Surface Science and Nanotechnology, Vol. 5, pp. 94-98 (2007).
17. R. Maeda, K. Chikamori and H. Yamamoto, Feed Rate of Wire Electrochemical Machining Using Pulsed Current, Precision Engineering, Vol. 31, pp. 193-199 (1984).
18. R. Schuster, V. Kirchner and P. Allongue, Electrochemical Micro- Machining, Science, Vol. 289, No. 5, pp. 98-101 (2000).
19. M. Kock, V. Kirchner and R. Schuster, Electrochemical Micromachining with Ultrashort Voltage Pulses a Versatile Method with Lithographical Precision, Electrochemical Action, Vol. 48, pp. 3213-3219 (2003).
20. B. Bhattacharyya and J. Munda, Experimental Investigation on the Influent of Electrochemical Machining Parameters on Machining Rate and Accuracy in Micromachining Domain, International Journal of Machine Tool and Manufacture, Vol. 43, pp. 1301-1310 (2003).
21. Y. Li, Y. Zheng, G. Yang and L. Q. Peng, Localized Electrochemical Micromachining with Gap Control, Sensors and Actuators, A 108, pp. 144-148 (2003).
22. H. Hocheng,Y. H. Sun, S. C. Lin and P.S. Kao, A Material Removal Analysis of Electrochemical Machining Using Flat-End Cathode, Journal of Material Processing Technology, Vol. 140, pp. 264-268(2003).
23. B. H. Kim, S. H. Ryu, D. K. Choi, and C. N. Chu, Micro Electrochemical Milling, Journal of Micromechanics and Microengineering, Vol. 15, No. 1, pp. 124-129 (2004).
24. P. Allongue, P. Jiang, V. Kirchner, A. L. Trimmer and R. Schuster, Electrochemical Micromachining of p-Type Silicon, Journal of Physical Chemistry B, Vol. 108, pp. 14434-14439 (2004).
25. B. Bhattacharyya , M. Malapati and J. Munda, Advancement in Electrochemical Micro-machining, Journal of Materials Processing Technology, Vol. 169, pp. 485-492 (2005).
26. T. Kurita, K. Chikamori, S. Kubota and M. Hattori, A Study of Three-dimensional Shape Machining with an ECM system, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 1311-1318 (2006).
27. B. Bhattacharyya, M. Malapati, J. Munda and A. Sarkar, Influence of Tool Vibration on Machining Performance in Electrochemical Micro-machining of Copper, Journal of Materials Processing Technology, Vol. 47, pp. 335-342 (2007).
28. M. S. Park and C. N. Chu, Micro-electrochemical Machining Using Multiple Tool Electrodes, Journal of Micromechanics and Micro-engineering, Vol. 17, No. 8, pp. 1451-1457 (2007).
29. J. A. Kenney and G.S. Hwang, Electrochemical Machining with Ultra Voltage Pulses: Modeling of Charge Dynamics and Feature Profile Evolution, Nanotechnology, Vol. 16, pp. S309-S313 (2005).
30. J. A. Kenney and G.S. Hwang, Etch Trends in Electrochemical Machining with Ultrashort Voltage Pulses, Electrochemical and Solid-State Letters, Vol. 9, No. 1, pp. D1-D4 (2006).
31. J. A. Kenney and G.S. Hwang, Computational Analysis of Intratool Interactions in Electrochemical Micromachining with Multitip Tool Electrodes, Electrochemical and Solid-State Letters, Vol. 9, No. 9, pp. D21-D23 (2006).
32. Y. F. Luo, Differential Equation for the Ultra-Fast Transient Migration in Electrolytic Dissolution, Electrochemistry Communications, Vol. 8, pp. 353-358 (2006).
33. H. S. Shin, B. H. Kim and C. N. Chu, Analysis of the Side Gap Resulting form Micro Electrochemical Machining with a Tungsten Wire and Ultrashort Voltage Pulses, Journal of Macromechanics and Microengineering, Vol. 18, pp. 1-6 (2008).
34. S. H. Ryu, Micro Fabrication by Electrochemical Process in Citric Acid Electrolyte, Journal of Materials Processing Technology, Vol. 209, pp. 2831-2837 (2008).
35. C. H. Jo, B. H. Kim and C. N. Chu, Micro Electrochemical Machining for Complex Internal Micro Features, CIRP Annals - Manufacturing Technology, Vol. 384, pp. 247-250 (2009).
36. 范智文,利用電化學加工製作微電極與鑽孔之研究與分析,國立中央大學機械工程學系,博士論文,5月(2010).
37. H. Hocheng and P.S. Pa, Electropolishing and Electrobrightening of Holes Using Different Feeding Electrodes, Journal of Materials Processing technology. Vol. 89-90, pp. 440-446 (1999).
38. M. S. Nikolova, A. Natarajan and P. C. Searson, Electrochemical Fabrication of Sharp Nickel Tips in H2SO4 Solutions, Journal of the Electrochemical Society. Vol. 144, No. 2, pp. 455-460 (1997).
39. M. Datta and D. Landolt, Fundamental Aspects and Applications of Electrochemical Microfabrication, Electrochemical Acta, Vol. 45, pp.2535–2558 (2000).
40. J.F. Thorpe and R.D. Zerkle, Theoretical Analysis of the Equilibrium Sinking of Shallow, Axially Symmetric, Cavities by Electrochemical Machining, Electrochemical Society, Princeton, pp. 1-39(1971).
41. G.J Edwards and P.R. Pearce, Comparison of AC and DC Electrochemical Etching Techniques for the Fabrication of Tungsten Whiskers, Journal of Physics. Vol. 11, pp. 761-764 (1978).
42. 田福助編著,電化學基本原理與應用,五洲出版社(2004).
43. 胡啟章編著,電化學原理與方法,五南圖書(2002).