| 研究生: |
洪志明 Jyh-Ming Hung |
|---|---|
| 論文名稱: |
高速磷化銦異質接面雙載子電晶體之研製 Design and Implementation of High-Speed InP-based Heterojunction Bipolar Transistor |
| 指導教授: |
辛裕明
Yue-ming Hsin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 磷化銦 、異質接面雙載子電晶體 |
| 外文關鍵詞: | InP, HBT, InP HBT |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磷化銦異質接面雙載子電晶體(InP HBT)由於具備高電子遷移率、高操作頻率及低導通電壓,並可以跟長波長光纖通訊結合等優點,是應用於有線/無線通訊系統、高速數位電路以及光纖通訊元件中的最佳選擇。
本論文主要使用磷化銦/砷化鋁銦鎵(InP/InAlGaAs)材料來研製異質接面雙載子電晶體,來符合高速無線通訊系統(Ka-band)與光纖通訊(40 Gb/s)要求。電晶體的研製包括單異質接面電晶體(SHBT)與雙異質接面電晶體(DHBT),在雙異質接面(DHBT)的基集接面採用砷化鋁銦鎵組長漸進與高摻雜層來減少DEC的電流阻擋;在光罩上設計不同佈局之元件型態,比較不同佈局元件設計與製程對高頻特性之影響,並進而提出最佳的元件佈局設計。
完成的大尺寸電晶體元件(射極面積為75 × 75 μm2)在集極電壓IC = 80 mA,InP/InAlGaAs SHBT之電流增益為87,崩潰電壓(BVCEO)為3 V,偏移電壓(VCE,offset)為150 mV;而InP/InAlGaAs DHBT之電流增益為39,崩潰電壓(BVCEO)為10 V,偏移電壓(VCE,offset)為90 mV。DHBT可以得到崩潰電壓與偏移電壓的改善,使之適用於高速無線通訊系統的功率放大器。
經過10道光罩製作所完成的小尺寸電晶體元件(射極面積為3 × 12 μm2,製程為自我校準的技術),在集極電壓VCE = 2 V與集極電流密度JC = 50 kA/cm2之偏壓下,InP/InAlGaAs SHBT之截止頻率(ft)可達80 GHz,最大震盪頻率(fmax)為58 GHz;而InP/InAlGaAs DHBT截止頻率(ft)可達77 GHz,最大震盪頻率(fmax)為80 GHz。在元件佈局設計上,最好的元件特性為使用自我校準的技術,且基射極歐姆接觸金屬均採用isolated pad方式連線,來有效減少元件基-集極接面面積,進而降低基集極接面電容,有效提高元件高頻特性。
Because the InP-based heterojunction bipolar transistor(HBT) has several merits of high electron mobility, high operation frequency, low turn-on voltage and combine with long wavelength fiber communication system, it’s the best choice for wire/wireless communication system, high speed digital circuit and fiber communication device applications.
This thesis used the InP/InAlGaAs materials to product heterojunction bipolar transistor for high-speed wireless communication system(Ka-band) and fiber communication system(40Gb/s). The transistor production include single heterojunction bipolar transistor(SHBT) and double heterojunction bipolar transistor(DHBT). In DHBT’s base-collector junction used InAlGaAs long grading and high doped layer to reduce the current blacking at DEC. We design different type of devices in mask lay-out, compare different type of devices and process with high-frequency characteristic and bring up the best type of device design.
In large size transistor devices, we demonstrated the current gain of InP/InAlGaAs SHBT(emitter size is 75 × 75 μm2) was 87 at collector voltage IC = 80 mA, the breakdown voltage(BVCEO) was 3V and the offset voltage(VCE,offset) was 150mV. Respectively, the current gain of InP/InAlGaAs DHBT(emitter size is 75 × 75 μm2) was 39 at collector voltage IC = 80 mA, the breakdown voltage(BVCEO) was 10V and the offset voltage(VCE,offset) was 90mV. DHBT can get improvement in breakdown voltage and offset voltage and suit to the power amplifier applications in high-speed wireless communication system.
We also demonstrated the small size transistor device(emitter size is 3 × 12 μm2, self-aligned technology) by ten mask process. The InP/InAlGaAs SHBT with cut-off frequency(ft) up to 80GHz and the maximum oscillation frequency(fmax) up to 58GHz, respectively, InP/InAlGaAs DHBT ft up to 78GHz and fmax up to 80GHz at collector voltage VCE = 2 V and collector current density JC = 50 kA/cm2. In the type of device design, the best device characteristic is fabricated by used self-aligned technology and the isolated pads type in the base and emitter ohmic contact metal. It’s effective to reduce the base-collector junction area and the base-collector junction capacitance and enhanced the high frequency characteristic of devices.
[1] B. Jalali, S.J. Pearton, “InP HBTs:Growth, Processing, and Application” Artech House, Inc., 1995
[2] Osamu Wada, Hideki Hasegawa, “InP-Based Meterials and Devices” John Wiley and Sons, Inc. 1998.
[3] Yongjoo Song, Kyounghoon Yang, “Reduction of Extrinsic Base-Collector Capacitance in InP/InGaAs SHBTs Using a New Base Pad Design” Indium Phosphide and Related Materials Conference, 2002. IPRM. 14th , 12-16 May 2002.
[4] Caffin, D., Duchenois, A.-M., Heliot, F., Besombes, C., Benchimol, J.-L., Launay, P., “Base-collector leakage currents in InP/InGaAs double heterojunction bipolar transistors” Electron Devices, IEEE Transactions on , Volume: 44 Issue: 6 , June 1997.
[5] Houston, P.A., “High-frequency heterojunction bipolar transistor device design and technology” Electronics & Communication Engineering Journal , Volume: 12 Issue: 5 , Oct. 2000.
[6] Ho, S.C.M., Pulfrey, D.L., “The effect of base grading on the gain and high-frequency performance of AlGaAs/GaAs heterojunction bipolar transistors” Electron Devices, IEEE Transactions on , Volume: 36 Issue: 10 , Oct. 1989.
[7] Hideki Fukano, Yoshifumi Takanashi and Masatomo Fujimoto, “2 Surface Currents in InP/InGaAs Heterojunction Bipolar Transistors Produced by Passivation Film Formation” Jpn. J. Appl. Phys. Vol. 32 1993.
[8] Houston, P.A., Lee, T.-W., Kumar, R., Hill, G., Hopkinson, M., Claxton, P.A., “A Transport and related properties of InP based HBTs” I InP Based Materials, Devices and Integrated Circuits, IEE Colloquium on , 21 Jun 1990.
[9] Streit, D.C., Cowles, J.C., Kobayashi, K.W., Gutierrez-Aitken, A., Block, T.R., “InP HBT technology and applications” Indium Phosphide and Related Materials, 1998 International Conference on , 11-15 May 1998.
[10] Shigematsu, H., Iwai, T., Matsumiya, Y., Ohnishi, H., Ueda, O., Fujii, T., “Ultrahigh fT and fmax new self-alignment InP/InGaAs HBT''s with a highly Be-doped base layer grown by ALE/MOCVD” Electron Device Letters, IEEE , Volume: 16 Issue: 2 , Feb. 1995.
[11] N. Matine , M. W. Dvorak , J. L. Pelouard , F. Pardo , and C. R. Bolognesi, “InP In HBTs By Vertical And Lateral Wet Etching 10th Intern. Conf. on Indium Phosphide and Related Meterials” 11-15 May 1998 Tsukuba , Japan
[12] Sami Bousnina , Piere Mandeville, Ammar B. Kouki, Robert Surridge , and Fadhel M. Ghannouchi, “Direct Parameter-Extraction Method for HBT Small-Signal Model IEEE Transaction on Microwave Theory and Techniques” , Vol. 50 , No. 2 , February 2002.
[13] 范振中, “磷化銦鎵/砷化鎵砷化鎵異質接面雙極性電晶體之研製及其集極調變對元件特性的影響” 碩士論文,國立中央大學,民國89年。
[14] 黃知澍, “集極在上異質接面雙極性電晶體之設計與製程” 碩士論文,國立中央大學,民國91年。