| 研究生: |
鄭志平 Chih-Ping Cheng |
|---|---|
| 論文名稱: |
微電化學放電加工法應用於硼矽玻璃的精微加工技術之研究 Microstructuring of Borosilicate Glass by Using Micro Electrochemical Discharge Machining |
| 指導教授: |
顏炳華
Biing-Hwa yan |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 電化學放電加工 、硼矽玻璃 、三維微細加工 、補償式脈衝電壓 |
| 外文關鍵詞: | Borosilicate Glass, 3D-microstructuring, Offset Pulse Voltage, ECDM, Electrochemical Discharge Machining |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硼矽玻璃(Borosilicate Glass、Pyrex glass),由於具陽極接合、透光性及耐腐蝕等特性,所以有被大量使用於微機電系統或其它先進製程中的趨勢。但由於玻璃本身所具有的硬脆特性,因此很難實現高精度、高效率、高可靠性的加工,特別是在微型元件的製造上。近年來電化學放電加工已被證實為極有潛力應用玻璃材料的微加工製程上,然而實際製程的運用上,其加工精度、加工效率及重現性控制才是ECDM製程實用化之關鍵門檻。然而與製程精度及加工效率有直接關係的是放電特性,其影響的主要關鍵因子為絕緣氣泡膜的幾何外形與尺寸、及其結構穩定性。因此本研究使用不同的加工參數探討其對於電於電化學放電特性的影響,並進一步從中尋求改善策略。
在運用於微孔加工上,實驗中利用扁平電極來減少電極側壁放電所造成的錐孔現象;並且採用脈衝電壓來減少放電能量的熱影響區以減少過切。結果顯示結合扁平電極與脈衝電壓對於微孔精度的改善上有顯著的效果,微孔的錐度可縮減3度。另外在微型元件的加工上,結果顯示在使用脈衝電壓與提高電極轉速的狀況下,結合層狀加工的方法,可以獲得高精度與高深寬比之微結構,並藉此證實了電化學放電加工運用於三維微細加工的可行性。
雖然使用脈衝電壓來調控單位時間內放電的能量,對於改進加工精度是有利的,但是卻很難獲得符合期待的加工效率。主要是因為在脈衝休止時間內並無電壓的供應,電解氣泡並非持續的產生,這將使得氣膜結構狀況變為更不可預期,使得後續所引發的放電現象變的不穩定,造成加工效率和重現性不佳。對此研究中嘗試著開發設計一新的脈衝供給型態,稱之為補償式脈衝電壓,此乃是在脈衝休止時間內仍提供一恆定且微量的電壓以確保電解氣泡持續的產生,藉此改善脈衝周期內氣膜結構的完整性以提昇放電能量釋放的穩定性。結果顯示利用補償式脈衝電壓可改善加工效率達50%,且不損及加工精度。
Borosilicate glasses (Pyrex glass) are becoming very important in MEMSs and many modern industries due to their anodic bonding properties, transparency and corrosion resistance. However, the inert nature of glass possesses challenges for machining these materials with high accuracy and efficiency, especially in micromachining process. Recently, electrochemical discharge machining (ECDM) has demonstrated to be a potential process for microstructuring of Pyrex glass. However, the key to widening ECDM application lies in how to obtain both high efficiency and machining accuracy. In ECDM process, the discharge phenomenon is closely related with the machining quality and efficiency. The main factors are concluded that the gas film stability and gas film size, in which discharge take place around electrode. This study uses different machining parameters, in order to investigate their inferences on the gas film integrity and to further seek solving tactics.
In the drilling process, to improve the quality of ECDM microhole, a flat sidewall-flat front tool electrode was designed to reduce taper phenomena due to the sidewall discharge. Besides, a pulse voltage is applied to improve the heat-affected zone in the rectified DC voltage. The experimental results show that the combination of flat sidewall-flat front tool and pulse voltage conspicuously increases the machining accuracy. The taper angle can be improved to 3 degree. In the microstructuring application, the results indicate that optimum combinations of both pulse voltage and tool rotational rate will realize better machining accuracy. The feasibility of 3-dimensional microstructure machining was demonstrated by a layer-by-layer ECDM micromilling machining.
Although pulse voltage is favorable for improving the machining quality, it is hard to obtain an efficient machining rate. The pulse-off (Toff) duration allows the gas film structure to be re-constructed, which makes the sustainability of a dense gas film difficult and results in unstable and unpredictable discharges. In this study a novel pulse voltage configuration, called offset pulse voltage, was applied in the ECDM process to enhance gas film stability and to further promote the discharge performance. Results also show that both the mean machining time and time deviation were decreased around 60 % without sacrificing machining accuracy by an adequate offset voltage.
1.T. Masuzawa, M. Fujino, K. Kobayashi and T. Suzuki,
“Wire electro-discharge grinding for micro-machining,”
Annals of the CIRP, vol. 34, pp. 431-434, 1986.
2.R. Wüthrich and V. Fascio, “Machining of non-conductive
materials using electrochemical discharge phenomenon -
an overview,” International Journal of Machine Tools &
Manufacture, vol. 45, pp. 1095-1108, 2005.
3.H. H. Kellog, “The interface observation of poles in
water electrolysis,” Journal of Electrochemical
Society, vol. 97, pp. 133-137, 1950.
4.H. Kurafuji and K. Suda, “Electrical discharge drilling
of glass,” Annals of the CIRP, vol. 16, pp. 415-419,
1968.
5.N. H. Cook, G. B. Foote, P. Jordan and B. N. Kalyani,
“Experimental studies in electro-machining,”
Transactions of ASME Journal of Engineering for
Industry, pp. 945-950, 1973.
6.M. Kubota, “Drilling of steel by using electrochemical
discharge machining,” Proceedings of the International
Conference on Production Engineering, Tokyo, pp. 51-55,
1974.
7.S. Tandon, V. K. Jain, P. Kumar and K. P. Rajurkar,
“Investigations into machining of composites,”
Precision Engineering, vol. 12, pp. 227-238, 1990.
8.K. Allesu, A. Ghosh and M. K. Muju, “Preliminary
qualitative approach of a proposed mechanism of
material removal in electrical machining of glass,”
European Journal of Mechanical Engineers, vol. 36, pp.
202-207,1992.
9.H. Langen, V. Fascio, R. Wüthrich and D. Viquerat,
“Three-dimensional structuring of borosilicate glass
devices? trajectory control,” International Conference
of the European Society for Precision Engineering and
Nanotechnology (EUSPEN) 2 (Eindhoven), pp. 435-438,
2002.
10.I. Basak and A. Ghosh, “Mechanism of spark generation
during electrochemical discharge machining: a
theoretical and experimental verification,” Journal
of Materials Processing Technology, vol. 62, pp. 46-53,
1996.
11.I. Basak and A. Ghosh, “Mechanism of material removal
in electrochemical discharge machining: a theoretical
model and experimental verification,” Journal of
Materials Processing Technology, vol. 71, pp. 350-359,
1997.
12.V. K. Jain, P. M. Dixit and P. M. Pandey, “On the
analysis of the electrochemical spark machining
process,” International Journal of Machining Tools &
Manufacture, vol. 39, pp. 165-186, 1999.
13.B. Bhattacharyya, B. N. Doloi and S. K. Sorkhel,
“Experimental investigations into electrochemical
discharge machining (ECDM) of non-conductive ceramic
materials,” Journal of Materials Processing
Technology,vol. 95, pp. 145-154, 1999.
14.C. T. Yang, S. S. Ho and B. H. Yan, “Micro hole
machining of borosilicate glass trough electrochemical
discharge machining (ECDM),” Key Engineering
Materials, vol. 196, pp. 149-166, 2001.
15.A. Kulkarni, R. Sharan and G. K. Lal, “An
experimental study of discharge mechanism in
electrochemical discharge machining,” International
Journal of Machine Tools & Manufacture, vol. 42, pp.
1121-1127, 2002.
16.V. Fascio, H. H. Langen, H. Bieuler and Ch.
Comninellis, “Investigations of the spark assisted
chemical engraving,” Electrochemistry Communications,
vol. 5, pp. 203-207, 2003.
17.V. Fascio, H. H. Langen, H. Bleuler and Ch.
Comninellis, Spark assisted chemical engraving: a novel
technology for glass microstructuring,” 54th Annual
Meeting of the International Society of
Electrochemistry, São Pedro, Brazil, pp. 203, 2003.
18.R. Wüthrich, V. Fascio and H. Bleuler, “A stochastic
model for electrode effects,” Electrochimica Acta,
vol. 49, pp. 4005-4010, 2004.
19.V. Fascio, R. Wüthrich and H. Bleuler, “Spark assisted
chemical engraving in the light of
electrochemistry,”Electrochimica Acta, vol. 49, pp.
3997-4003, 2004.
20.H. Tsuchiya, T. Inoue and M. Miyazaiki, “Wire electro-
chemical discharge machining of glasses and ceramics,”
Bulletin Japanese Society of Precision Engineering,
vol. 19, pp. 73-74, 1985.
21.V. K. Jain, P. S. Rao, S. K. Choudhury and K. P.
Rajurkar, “Experimental investigations into traveling
wire electrochemical spark machining (TW-ECSM) of
composites,” Transactions of ASME, Journal of
Engineering for Industry, vol. 113, pp.75-84, 1991.
22.Y. P. Singh, V. K. Jain, P. Kumar and D. C. Agrawal,
“Machining piezoelectric (PZT) ceramics using an
electrochemical spark machining (ECDM) process,”
Journal of Materials Processing Technology, vol. 58,
pp. 24-31, 1996.
23.V. K. Jain and N. Gautam, “Experimental investigations
into ECSD process using various tool kinematics,” I
International Journal of Machine Tools & Manufacture,
vol. 38, pp. 15-27, 1998.
24.H.-J. Lim, Y.-M. Lim, S. H. Kim and Y. K. Kwak, Self-
aligned micro tool and electrochemical discharge
machining (ECDM) for ceramic materials, Proceedings of
SPIE, vol. 4416, pp. 348-353, 2001.
25.V. Fascio, R. Wüthrich, D. Viquerat and H. Lengen, “3D
microstructuring of glass using electrochemical
discharge machining (ECDM),” International Symposium
on Micromechatronics and Human Science, pp. 179-183,
1999.
26.V. K. Jain, S. K. Choudhury and K. M. Ramesh, “On the
machining of alumina and glass,” International Journal
of Machine Tools & Manufacture, vol. 42, pp. 1269-1276,
2002.
27.W. Y. Peng, Y. S. Liao, “Study of electrochemical
discharge machining technology for slicing non-
conductive brittle materials,” Journal of Material
Processing Technology, vol. 149, pp. 263-369, 2004.
28.D. J. Kim, Y. Ahn, S. H. Lee and Y. K. Kim, “Voltage
pulse frequency and duty ratio effect in an
electrochemical discharge microdrilling process of
borosilicate glass,” International Journal of Machine
Tools & Manufacture, vol. 46, pp 1064-1067, 2005.
29.R. Wüthrich, L. A. Hof, A. Lal, K. Fujisaki, H.
Bleuler, Ph. Mandin and G. Picard, “Physical
principles and miniaturization of spark assisted
chemical engraving (SACE),” Journal of Micromechanics
and Microengineering, vol. 15, S268–S275, 2005.
30.R. Wüthrich, U. Spaelter and H. Bleuler, “The current
signal in spark-assisted chemical engraving (SACE):
what does it tell us?,” Journal of Micromechanics and
Microengineering, vol. 16, pp. 779-785, 2006.
31.R. Wüthrich, U. Spaelter, Y. Wu and H. Bleuler, “A
systematic characterization method for gravity-feed
micro-hole drilling in glass with spark assisted
chemical engraving (SACE),” Journal of Micromechanics
and Microengineering, vol. 16, pp. 1891-1896, 2006.
32.R. Wüthrich, B. Despont, P. Maillard and H. Bleuler,
“Improving the material removal rate in spark-assisted
chemical engraving (SACE) gravity-feed micro-hole
drilling by tool vibration,” Journal of Micromechanics
and Microengineering, vol. 16, N28-N31, 2006.
33.C. T. Yang, S. L. Song, B. H. Yan and F. Y. Huang,
“Improving machining performance of wire
electrochemical discharge machining by adding SiC
abrasive to electrolyte,” International Journal of
Machine Tools & Manufacture, vol. 46, pp. 2044-2050,
2006.
34.B. H. Yan, C. T. Yang, F. Y. Huang and Z. H. Lu,
“Electrophoretic deposition grinding (EPDG) for
improving the precision of microholes drilled via
ECDM,” Journal of Micromechanics and Microengineering,
vol. 17, pp. 376-383, 2007.
35.P. Maillard, B. Despont, H. Bleuler and R. Wüthrich,
“Geometrical characterization of micro-holes drilled
in glass by gravity-feed with spark assisted chemical
engraving (SACE),” Journal of Micromechanics and
Microengineering, vol. 17, pp. 1343-1349, 2007.
36.S. S. Choi, M. Y. Jung, D. W. Kim, M. A. Yakshin, J. Y.
Park and Y. Kuk, “Fabrication and microelectron gun
arrays using laser micromachining,” Microelectronic Engineering, vol. 41-42, pp. 167-170, 1998.
37.X.-Q. Sun, T. Masuzawa and M. Fujino, “Micro
ultrasonic machining and its applications in MEMS,”
Sensors and Actuators A, vol. 57, pp. 159-164, 1996.
38.K. Egashira and T. Masuzawa, “Microultrasonic
machining by the application of workpiece vibration,”
Annals of the CIRP, vol. 48, pp. 131-134, 1999.
39.R. Wüthrich, K Fujisaki, Ph. Couthy, L. A. Hof and H
Bleuler, “Spark assisted chemical engraving (SACE) in
microfactory,” Journal of Micromechanics and
Microengineering, vol. 15, pp. S276-S280, 2005.
40.H. Langen, V. Fascio, R. Wüthrich and D. Viquerat,
“Three-dimensional microstructuring of borosilicate
glass wafers by spark-assisted chemical engraving,”
Proceeding of SPIE, vol. 4568, pp. 304-309, 2001.
41.R. Wüthrich, V. Fascio, D. Viguerat and H. Lenge, “In
suit measurement and micromachining of glass,”
International Symposium on Micromechatronics and Human
Science, pp. 185-191, 1999.
42.M.-H. Han, B.-K. Min and S. J. Lee, “Improvement of
surface integrity of electro-chemical discharge
machining process using powder-mixed electrolyte,”
Journal of Materials Processing Technology, vol. 191,
pp. 224-227, 2007.
43.Y. S. Liao and W. Y. Peng, “Study of hole-machining on
borosilicate glass wafer by electrochemical discharge
machining (ECDM),” Materials Science Forum, vol. 505-
507, pp. 1207-1212, 2006.
44.Y. S. Liao and W. Y. Peng, “Some investigations of
electrochemical discharge phenomena amd its
application,” 15th International Symposium on
Electromachining (ISEM XV), Pittsburgh, pp. 469-474,
2007.
45.T. Iida, H. Matsushima and Y. Fukunaka, “Water
electrolysis under a magnetic field,” Journal of the
Electrochemical Society, vol. 154, pp. E112-E115, 2007.
46.H. Matsushima, T. Nohira, I. Mogi and Y. Ito, “Effects
of magnetic fields on iron electrodeposition,” Surface
and Coatings Technology, vol. 179, pp. 245-251, 2004.
47.H. B. Knight, The Arc Discharge, Chapman and Hall Ltd.
1960.