跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林宗漢
Zong-han Lin
論文名稱: 矽膠塗佈厚度對扁平管吸附床性能之影響
The influence of performance of flat-tube adsorption bed by the thickness of silica gel coated layer
指導教授: 楊建裕
Chien-yuh Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 95
中文關鍵詞: 厚度吸附式製冷吸附床矽膠-水
外文關鍵詞: thickness, adsorption cooling, silica gel-water, adsorption bed
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用矽膠-水做為工作配對,以扁平管做為吸附式空調系統中之吸附床,希望改進現有吸附床缺點,以期達到高填充量與低熱阻之吸附床,並採用塗佈式設計,增加吸附床性能。另外針對不同矽膠塗佈厚度做研究,分析不同塗佈厚度對於吸附床性能之影響,找出最佳塗佈厚度。
    實驗結果發現,相較於圓管式吸附床,扁平管式吸附床在使用相同的腔體容積下有較多的矽膠填充量與較好的吸附性能。而在塗佈厚度的分析,薄塗佈厚度之矽膠層有比較小的熱阻以及較佳的質傳性能,因此在較少的矽膠量下仍有較好的吸附性能與冷凍能力。


    An investigation of adsorption bed using flat-tube in a adsorption cooling system with siliga gel as adsorbent and water as refrigerant is described. The new type adsorption bed is in order to increase the amount of adsorbent and decease the thermal resistance. Otherwise, the performance of the adsorption bed with difference thickness of silica gel coated layer on the flat-tube is discussed.
    The results show that the performance of the flat-tube adsorption bed is better than the circular tube. The amount of water adsorbed of flat-tube adsorption is 2.2 times than the circular tube in 10 minutes at adsorption cycle. Otherwise, it is smaller thermal resistance and better performance of mass transfer by thin thickness of silica gel coated layer. It means that the 2.8 mm coated layer has better performance of adsorption and cooling power.

    摘要 ........................................................................................................................ i Abstract ................................................................................................................. ii 致謝 ...................................................................................................................... iii 目錄 ...................................................................................................................... iv 表目錄 .................................................................................................................. vi 圖目錄 ................................................................................................................. vii 符號說明 ............................................................................................................... x 第一章 前言 ......................................................................................................... 1 1.1 研究動機 ................................................................................................ 1 1.2 研究目的 ................................................................................................ 2 第二章 文獻回顧 ................................................................................................. 5 2.1 固體吸附式製冷 .................................................................................... 5 2.2 吸附床熱傳 ............................................................................................ 6 2.3 吸附床熱交換器型式 ............................................................................ 7 2.4 吸附劑填放型式 .................................................................................... 8 2.4.1 填充式吸附床 ............................................................................. 8 2.4.2 固化式吸附床 ............................................................................. 9 2.4.3 塗佈式吸附床 ........................................................................... 10 2.5 吸附劑厚度 .......................................................................................... 11 2.6 結論 ...................................................................................................... 12 第三章 實驗方法 ............................................................................................... 31 3.1 吸附床製作 .......................................................................................... 31 3.1.1 吸附床熱交換器設計與製作 ................................................... 31 3.1.2 吸附劑(矽膠)塗佈 .................................................................... 31 3.2 實驗系統 .............................................................................................. 32 3.3 實驗量測設備 ...................................................................................... 32 3.4 實驗步驟 .............................................................................................. 34 3.4.1 吸附性能測試 ........................................................................... 34 3.4.2 脫附性能測試 ........................................................................... 35 3.5 數據換算 .............................................................................................. 35 3.5.1 理想吸附循環圖 ....................................................................... 35 3.5.1 吸附/脫附速率 .......................................................................... 36 3.5.2 製冷率(Cooling Power) ............................................................ 36 3.5.3 加熱率 ....................................................................................... 37 第四章 實驗結果與討論 ................................................................................... 54 4.1 扁平管與圓管吸附床性能比較 .......................................................... 54 4.1.1 扁平管吸附床吸附性能 ........................................................... 54 4.1.2 扁平管吸附床脫附性能 ........................................................... 54 4.1.3 吸附床性能比較 ....................................................................... 55 4.2 矽膠塗佈厚度性能比較 ...................................................................... 57 4.2.1 塗佈厚度3.4 mm 吸附床性能 ................................................ 57 4.2.2 塗佈厚度2.8 mm 吸附床性能 ................................................ 58 4.2.2 塗佈厚度2 mm 吸附床性能 ................................................... 58 4.2.3 性能比較 ................................................................................... 59 第五章 結論 ....................................................................................................... 80 參考文獻 ............................................................................................................. 81 附錄、實驗誤差分析 ......................................................................................... 85

    Alam, K. C. A., Saha, B. B., Kang, Y. T., Akisawa, A., Kashiwagi, T., 2000, “Heat exchanger design effect on the system performance of silica gel adsorption refrigeration systems,” International Journal of Heat and Mass Transfer, Vol. 43, pp. 4419?4431.
    Bjurstrom, H., Karawacki, E., and Carlsson, B., 1984, “Thermal conductivity of a microporous particulate medium: moist silica gel”, International Journal of Heat and Mass Transfer, Vol. 27, pp. 2025?2036.
    Boelman, E. C., Saha, B. B., and Kashiwagi, T., 1995, “Experimental investigation of a silica gel?water adsorption refrigeration cycle?The influence of operating conditions on cooling output and COP”, ASHRAE Transactions, Vol. 101, NO. 2, pp. 358?366.
    Cacciola. G., and Restuccia, G., 1994, “Progress on adsorption heat pump”, Heat Recovery Systems and CHP, Vol. 4, pp. 409?420.
    Chang, K. S., Chen, M. T., and Chung, T. W., 2005, “Effects of the thickness and particle size of silica gel on the heat and mass transfer performance of a silica gel-coated bed for air?conditioning adsorption systems”, Applied Thermal Engineering, Vol. 25, pp. 2330?2340.
    Chang, W. S., Wang, C. C., and Shieh, C. C., 2007, “Experimental study of a solid adsorption cooling system using flat?tube heat exchangers as adsorption bed”, Applied Thermal Engineering, Vol. 27, pp. 2195?2199.
    Eun, T. H., Song, H. K., Han, J. H., Lee, K. H., and Kim, J. N., 2000, “ in silica?expanded graphite composite blocks for adsorption heat pumps: Part I. Characterization of the composite blocks”, International Journal of Refrigeration, Vol. 23, pp. 64?73.
    Eun, T. H., Song, H. K., Han, J. H., Lee, K. H., and Kim, J. N., 2000, “Enhancement of heat and mass transfer in silica?expanded graphite composite blocks for adsorption heat pumps: Part II. Cooling system using the composite blocks”, International Journal of Refrigeration, Vol. 23, pp. 74?81.
    Freni, A., Russo, F., Vasta, S., Tokarev, M., Aristov, Y. I., and Restuccia, G., 2007, “An advanced solid sorption chiller using SWS?1L”, Applied Thermal Engineering, Vol. 27, pp. 2200?2204.
    Guilleminot, J. J., Choisier, A., Chalfen, J. B., Nicolas, S., and Reymoney, J. L., 1993, “Heat transfer intensification in fixed bed adsorbers”, Heat Recovery Systems and CHP, Vol. 13, pp. 297?300.
    Gurgel J. M., and Kluppel R. P., 1996, “Thermal conductivity of hydrated silica?gel”, The Chemical Engineering Journal, Vol. 61, pp. 133?138.
    Kubota, K., Ueda, T., Fujisawa, R., Kobayashi, J., Watanabe, F., Kobayashi, N., and Hasatani, M., 2008, “Cooling output performance of a prototype adsorption heat pump with fin?type silica gel tube module”, Applied Thermal Engineering, Vol. 28, pp. 87?93.
    Liu, Y. L., Wang, R. Z., Xia, Z. Z., 2005, “Experimental study on a continuous adsorption water chiller with novel design”, International Journal of Refrigeration, Vol. 28, pp. 218?230.
    Meunier, F., 1993, “Solid sorption: an alternative to CFCs”, Heat Recovery Systems and CHP, Vol. 13, No. 4, pp. 289?295.
    Marletta, L., Maggio, G., Freni, A., Ingrasciotta, M., Restuccia, G., 2002, “A non-uniform temperature non-uniform pressure dynamic model of heat and mass transfer in compact adsorbent beds”, International Journal of Heat and Mass Transfer, Vol. 45, pp. 3321-3330.
    Pino, L., Aristov, Yu. I., Cacciola, G., and Restuccia, G., 1996, “Composite materials based on zeolite 4A for adsorption heat pumps”, Adsorption, Vol. 3, pp. 33?40.
    Restuccia, G., and Cacciola, G., 1999, “Performance of adsorption system for ambient heating and air conditioning”, International Journal of Refrigeration, Vol. 22, pp. 18?26.
    Restuccia, G., Freni, A., and Maggio, G., 2002, “A zeolite?coated bed for air conditioning adsorption systems: parametric study of heat and mass transfer by dynamic simulation”, Applied Thermal Engineering, Vol. 22, pp. 619?630.
    Restuccia, G., Freni, A., Vasta, S., and Aristov, Y., 2004, “Selective water sorbent for solid sorption chiller: experimental results and modeling”, International Journal of Refrigeration, Vol. 27, pp. 284?293.
    Restuccia, G., Freni, A., Russo, F., and Vasta, S., 2005, “Experimental investigation of a solid adsorption chiller based on a heat exchanger coated with hydrophobic zeolite”, Applied Thermal Engineering, Vol. 25, pp.1419?1428.
    Tather, M., and Erdem-Senatalar, A., 1999, “The effects of thermal and mass diffusivities on the performance of adsorption heat pumps employing zeolite synthesized on metal supports”, Microporous and Mesoporous Materials, Vol. 28, pp. 195-203.
    Wang, L. J., Zhu, D. S., and Tan, Y. K., 1999, “Heat transfer enhancement of the adsorber of an adsorption heat pump”, Adsorption, Vol. 5, pp. 279?286.
    Wang, R. Z., and Oliveira, R. G., 2006, “Adsorption refrigeration?An efficient way to make good use of waste heat and solar energy”, Progress in Energy and Combustion Science, Vol. 32, pp. 424?458.
    Yang, G. Z., Xia, Z. Z., Wang, R. Z., Keletigui, D., Wang, D. C., Dong, Z. H., and Yang, X., 2006, “Research on a compact adsorption room air conditioner”, Energy Conversion & Management, Vol. 47, pp. 2167?2177.
    Zhang, L. Z., 2000, “Design and testing of an automobile waste heat adsorption cooling system”, Applied Thermal Engineering, Vol. 20, pp. 103?114
    Zhu, D. S., and Wang, S. W., 2002, “Experimental investigation of contact resistance in adsorber of solar adsorption refrigeration”, Solar Energy, Vol. 73, No. 3, pp. 177?185.
    王如竹、王麗偉,2005,「低品位熱能驅動的綠色製冷技術:吸附式製冷」,科學通報,第50卷第二期。
    王智正、謝鎮州、張文師、唐震宸,2004,「熱能驅動之固體吸附式製冷實驗研究」,中國機械工程學會第二十一屆全國學術研討會。
    陳又維,「薄矽膠層吸附床之性能研究」,國立中央大學能源工程研究所碩士論文。
    謝鎮州、張文師、王智正、唐震宸,2004,「運用工業廢熱之固體吸附式製冷系統」,化工技術,第12卷第四期。

    QR CODE
    :::