| 研究生: |
宋品瑢 Pin-Jung Sung |
|---|---|
| 論文名稱: |
新型類液態固體材料- 耐紫外光自癒性乳液非晶質用於三維列印支撐材 UV-resistant Self-healing Emulsion Glass as a New Liquid-like Solid Material for 3D Printing |
| 指導教授: |
曹恆光
Heng-Kwong Tsao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 三維列印 、水包油乳液 |
| 外文關鍵詞: | 3D printing, oil-in-water emulsion |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一部分
新型類液態固體材料-耐紫外光自癒性乳液非晶質用於三維列印支撐材
在現今科技發展中三維列印技術(3D printing)越發受到重視,對於固化時間較長的印刷油墨(printing inks)會需要支撐材(supporting mediums)輔助,而具備適當強度且易清洗的類液態固體(liquid-like solid)常被應用於此,本研究提供一種乳液系統的類液態固體作為光固化型與熱固化型3D列印的支撐材,由矽油/山梨糖醇/十二烷基硫酸鈉/水 透過低能量方式製成,設計分散的油相體積分率超過85%並施加剪應力,使微米級油滴緊密堆積於水相中形成不流動的乳液非晶質(emulsion glass),而被擠壓的油滴結構使乳液非晶質具黏彈性與自癒能力(self-healing),屬於新型的類液態固體材料。而研究發現隨著油黏度與油含量上升,降伏強度(yield stress)也隨之上升,此性質可用於搭配不同黏性與強度的印刷油墨,同時,這種乳液非晶質在光固化與熱固化過程後仍可重複回收使用達6次,在未來可望有更多發展應用。
第二部份
延續第一部份關於乳液非晶質的探討,此章節改變了乳液製備方法和調整油/水/界面活性劑之間比例,來獲得熱力學穩定的類固體(solid-like) 微乳液,表現出類固體的性質,也成功應用於3D列印支撐材。此研究的乳液系統是以癸烷為油相,硫琥辛酯鈉與山梨醇酯80/山梨醇酐酯80為界面活性劑,以相轉換方法(Phase-inversion method)形成水包油微乳液(O/W microemulsion),實驗中發現在持續添加水的相轉換過程中,水含量達一範圍值時乳液會呈現類固態性質,乳液會呈現類固態性質,其中,以山梨醇酯80/山梨醇酐酯80組合作為界面活性劑的乳液系統,在不同製備方法和長時間觀察下皆可量測出相似特性,表現熱力學穩定性,且透過加裝偏光片的光學顯微鏡觀察到類晶體的結構。接著我們透過調整界面活性劑親酯親水性(Hydrophilic-lipophilic balance)和油/水比例得到不同降伏強度的類固體微乳液,並實際作為3D列印的支撐材。
Chapter 1
UV-resistant Self-healing Emulsion Glass as a New Liquid-like Solid Material for 3D Printing.
Directly writing 3D structures into supporting mediums is a relatively new developing technology in additive manufacturing. In this work, durable and recyclable liquid-like solid (LLS) materials are developed as supporting mediums that are stable for both UV- and thermal-solidification. Our LLS material is comprised of densely packed oil droplets in a continuous aqueous medium, known as emulsion glass. Its elastic nature emerges from the jammed structure of oil droplets, which offers this LLS material rapidly self-healing ability. Moreover, the yield stress of the glass is relatively low and can be tuned by the viscosity and weight percentage of oil. The capability of the emulsion glass as supporting mediums is successfully demonstrated by directly writing and then curing designed structures. The emulsion glass has been repeatedly used at least 6 times upon exposure to UV irradiation and heat, implying it can expand the applications of supporting medium to the writing process involving UV- and thermal-curable inks simultaneously.
Chapter 2
In the second part, we changed the preparing procedures and the ratio of oil/water/surfactant in emulsions. Two emulsion systems formed by low-energy phase inversion methods are studied. The oil phase is decane while the surfactant is Tween 80 and Span 80 for system 1 and Dioctyl sulfosuccinate sodium salt (AOT) for system 2.
With increasing the water content, the sample transited from liquid-like water-in-oil (W/O) emulsion to solid-like oil-in-water (O/W) emulsion. Eventually, liquid-like O/W emulsion was obtained as the amount of water is higher than 60wt%. The thermodynamic stability of solid-like O/W emulsion were confirmed by different preparation methods and long-term observation, it can be classified to be microemulsions. We also found that the viscoelastic property of the solid-like emulsions can be tuned by varying hydrophilic-lipophilic balance (HLB) and water content.
[1] Murr, L. E., Gaytan, S. M., Ramirez, D. A., Martinez, E., Hernandez, J., Amato, K. N., ... & Wicker, R. B. (2012). Metal fabrication by additive manufacturing using laser and electron beam melting technologies. Journal of Materials Science & Technology, 28(1), 1-14.
[2] O’Bryan, C. S., Bhattacharjee, T., Hart, S., Kabb, C. P., Schulze, K. D., Chilakala, I., Angelini, T. E. (2017). Self-assembled micro-organogels for 3D printing silicone structures. Science advances, 3(5), e1602800.
[3] Taylor, A. D., Kim, E. Y., Humes, V. P., Kizuka, J., & Thompson, L. T. (2007). Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells. Journal of Power Sources, 171(1), 101-106..
[4] Dilberoglu, U. M., Gharehpapagh, B., Yaman, U., & Dolen, M. (2017). The role of additive manufacturing in the era of industry 4.0. Procedia Manufacturing, 11, 545-554.
[5] Hinton, T. J., Jallerat, Q., Palchesko, R. N., Park, J. H., Grodzicki, M. S., Shue, H. J., ... & Feinberg, A. W. (2015). Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Science Advances, 1(9), e1500758..
[6] Bhattacharjee, T., Zehnder, S. M., Rowe, K. G., Jain, S., Nixon, R. M., Sawyer, W. G., & Angelini, T. E. (2015). Writing in the granular gel medium. Science Advances, 1(8), e1500655.
[7] Highley, C. B., Rodell, C. B., & Burdick, J. A. (2015). Direct 3D printing of shear‐thinning hydrogels into self‐healing hydrogels. Advanced Materials, 27(34), 5075-5079.
[8] Hinton, T. J., Hudson, A., Pusch, K., Lee, A., & Feinberg, A. W. (2016). 3D printing PDMS elastomer in a hydrophilic support bath via freeform reversible embedding. ACS Biomaterials Science & Engineering, 2(10), 1781-1786.
[9] Tadros, T. F. (2016). Emulsions: Formation, Stability, Industrial Applications. Walter de Gruyter GmbH & Co KG.
[10] Yu, Y., Liu, F., Zhang, R., & Liu, J. (2017). Suspension 3D Printing of Liquid Metal into Self‐Healing Hydrogel. Advanced Materials Technologies, 2(11), 1700173.
[11] Stokes, J. R., & Frith, W. J. (2008). Rheology of gelling and yielding soft matter systems. Soft Matter, 4(6), 1133-1140.
[12] Nishinari, K. (2009). Some thoughts on the definition of a gel. In Gels: Structures, Properties, and Functions (pp. 87-94). Springer, Berlin, Heidelberg.
[13] Wang, Z., An, G., Zhu, Y., Liu, X., Chen, Y., Wu, H., ... & Mao, C. (2019). 3D-printable self-healing and mechanically reinforced hydrogels with host–guest non-covalent interactions integrated into covalently linked networks. Materials Horizons, 6(4), 733-742.
[14] Bagheri, A., & Jin, J. (2019). Photopolymerization in 3D printing. ACS Applied Polymer Materials, 1(4), 593-611.
[15] Singh, V., Nguyen, T. P., Sheng, Y. J., & Tsao, H. K. (2018). Stress-Driven Separation of Surfactant-Stabilized Emulsions and Gel Emulsions by Superhydrophobic/Superoleophilic Meshes. The Journal of Physical Chemistry C, 122(43), 24750-24759.
[16] Patel, A. R., Rodriguez, Y., Lesaffer, A., & Dewettinck, K. (2014). High internal phase emulsion gels (HIPE-gels) prepared using food-grade components. RSC Advances, 4(35), 18136-18140.
[17] Cameron, N. R., Sherrington, D .C. (2005). Advances in Polymer Science. Springer Berlin, Heidelberg.
[18] Xu, Y. T., Liu, T. X., & Tang, C. H. (2019). Novel pickering high internal phase emulsion gels stabilized solely by soy β-conglycinin. Food Hydrocolloids, 88, 21-30.
[19] Tanaka, H., Meunier, J., & Bonn, D. (2004). Nonergodic states of charged colloidal suspensions: Repulsive and attractive glasses and gels. Physical Review E, 69(3), 031404.
[20] Lukić, M., Clarke, J., Tuck, C., Whittow, W., & Wells, G. (2016). Printability of elastomer latex for additive manufacturing or 3D printing. Journal of Applied Polymer Science, 133(4).
[21] Tian, K., Bae, J., Bakarich, S. E., Yang, C., Gately, R. D., Spinks, G. M., ... & Vlassak, J. J. (2017). 3D printing of transparent and conductive heterogeneous hydrogel–elastomer systems. Advanced Materials, 29(10), 1604827.
[22] Plott, J., & Shih, A. (2017). The extrusion-based additive manufacturing of moisture-cured silicone elastomer with minimal void for pneumatic actuators. Additive Manufacturing, 17, 1-14.
[23] Ono, F., Shinkai, S., & Watanabe, H. (2018). High internal phase water/oil and oil/water gel emulsions formed using a glucose-based low-molecular-weight gelator. New Journal of Chemistry, 42(9), 6601-6603.
[24] George, M., & Weiss, R. G. (2006). Low molecular-mass organic gelators. In Molecular Gels (pp. 449-551). Springer, Dordrecht.
[25] Bhattacharjee, T., Gil, C. J., Marshall, S. L., Urueña, J. M., O’Bryan, C. S., Carstens, M., ... & Sawyer, W. G. (2016). Liquid-like solids support cells in 3D. ACS Biomaterials Science & Engineering, 2(10), 1787-1795.
[26] Shanti, R., Hadi, A. N., Salim, Y. S., Chee, S. Y., Ramesh, S., & Ramesh, K. (2017). Degradation of ultra-high molecular weight poly (methyl methacrylate-co-butyl acrylate-co-acrylic acid) under ultra violet irradiation. RSC advances, 7(1), 112-120.
[1] Tadros, T. F. (2016). Emulsions: Formation, Stability, Industrial Applications. Walter de Gruyter GmbH & Co KG.
[2] Soma, J., & Papadopoulos, K. D. (1996). Ostwald ripening in sodium dodecyl sulfate-stabilized decane-in-water emulsions. Journal of Colloid and Interface Science, 181(1), 225-231.
[3] Alam, M. M., & Aramaki, K. (2008). Hexagonal phase based gel-emulsion (O/H1 gel-emulsion): Formation and rheology. Langmuir, 24(21), 12253-12259.
[4] McClements, D. J., Dungan, S. R., German, J. B., Simoneau, C., & Kinsella, J. E. (1993). Droplet size and emulsifier type affect crystallization and melting of hydrocarbon‐in‐water emulsions. Journal of Food Science, 58(5), 1148-1151.
[5] TAN, Ying, et al. Fabrication of starch-based nanospheres to stabilize pickering emulsion. Carbohydrate polymers, 2012, 88.4: 1358-1363.
[6] Tan, Y., Xu, K., Liu, C., Li, Y., Lu, C., & Wang, P. (2012). Fabrication of starch-based nanospheres to stabilize pickering emulsion. Carbohydrate Polymers, 88(4), 1358-1363.
[7] Delmas, T., Piraux, H., Couffin, A. C., Texier, I., Vinet, F., Poulin, P., ... & Bibette, J. (2011). How to prepare and stabilize very small nanoemulsions. Langmuir, 27(5), 1683-1692.
[8] Steiner, U., Meller, A., & Stavans, J. (1995). Entropy driven phase separation in binary emulsions. Physical Review Letters, 74(23), 4750.
[9] Gupta, A., Badruddoza, A. Z. M., & Doyle, P. S. (2017). A general route for nanoemulsion synthesis using low-energy methods at constant temperature. Langmuir, 33(28), 7118-7123.
[10] Jin, H., Wang, X., Chen, Z., Li, Y., Liu, C., & Xu, J. (2018). Fabrication of β-conglycinin-stabilized nanoemulsions via ultrasound process and influence of SDS and PEG 10000 co-emulsifiers on the physicochemical properties of nanoemulsions. Food Research International, 106, 800-808.
[11] Perazzo, A., Preziosi, V., & Guido, S. (2015). Phase inversion emulsification: Current understanding and applications. Advances in Colloid and Interface Science, 222, 581-599.
[12] Pusey, P. N., & van Megen, W. (1987). Observation of a glass transition in suspensions of spherical colloidal particles. Physical Review Letters, 59(18), 2083.
[13] Wang, L., Mutch, K. J., Eastoe, J., Heenan, R. K., & Dong, J. (2008). Nanoemulsions prepared by a two-step low-energy process. Langmuir, 24(12), 6092-6099.
[14] Porras, M., Solans, C., Gonzalez, C., & Gutierrez, J. M. (2008). Properties of water-in-oil (W/O) nano-emulsions prepared by a low-energy emulsification method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 324(1-3), 181-188.
[15] Tong, K., Zhao, C., Sun, Z., & Sun, D. (2015). Formation of concentrated nanoemulsion by W/O microemulsion dilution method: biodiesel, tween 80, and water system. ACS Sustainable Chemistry & Engineering, 3(12), 3299-3306.
[16] Song, D., Zhang, W., Gupta, R. K., & Melby, E. G. (2011). Role of operating conditions in determining droplet size and viscosity of tackifier emulsions formed via phase inversion. AIChE Journal, 57(1), 96-106.
[17] Kotlarchyk, M., Chen, S. H., Huang, J. S., & Kim, M. W. (1984). Structure of three-component microemulsions in the critical region determined by small-angle neutron scattering. Physical Review A, 29(4), 2054.
[18] Koneva, A. S., Safonova, E. A., Kondrakhina, P. S., Vovk, M. A., Lezov, A. A., Chernyshev, Y. S., & Smirnova, N. A. (2017). Effect of water content on structural and phase behavior of water-in-oil (n-decane) microemulsion system stabilized by mixed nonionic surfactants SPAN 80/TWEEN 80. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 518, 273-282.
[19] Forgiarini, A., Esquena, J., González, C., & Solans, C. (2000). Studies of the relation between phase behavior and emulsification methods with nanoemulsion formation. In Trends in Colloid and Interface Science XIV (pp. 36-39). Springer, Berlin, Heidelberg.
[20] Gupta, A., Badruddoza, A. Z. M., & Doyle, P. S. (2017). A general route for nanoemulsion synthesis using low-energy methods at constant temperature. Langmuir, 33(28), 7118-7123.
[21] Fogden, A., Hyde, S. T., & Lundberg, G. (1991). Bending energy of surfactant films. Journal of the Chemical Society, Faraday Transactions, 87(7), 949-955.
[22] Boyd, J. V., Parkinson, C., & Sherman, P. (1972). Factors affecting emulsion stability, and the HLB concept. Journal of Colloid and Interface Science, 41(2), 359-370.
[23] Mayer, S., Weiss, J., & McClements, D. J. (2013). Vitamin E-enriched nanoemulsions formed by emulsion phase inversion: factors influencing droplet size and stability. Journal of Colloid and Interface Science, 402, 122-130.
[24] Chang, D. P., Barauskas, J., Dabkowska, A. P., Wadsäter, M., Tiberg, F., & Nylander, T. (2015). Non-lamellar lipid liquid crystalline structures at interfaces. Advances in Colloid and Interface Science, 222, 135-147.
[25] McClements, D. J. (2012). Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 8(6), 1719-1729.
[26] Larche, F. C., & Delord, P. (1985). Structures and stability of isotropic phases in the AOT-decane-water system. Fluid Phase Equilibria, 20, 257-264.