| 研究生: |
陳詩宏 Shih-Hung Chen |
|---|---|
| 論文名稱: |
向量式DKT薄殼元推導與板殼結構運動分析 Development of the Vector Form DKT thin Shell Element and Motion Analyses if shell Structures |
| 指導教授: |
王仲宇
Chung-Yue Wang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 薄殼元 、大變位分析 、向量式有限元(VFIFE) 、運動分析 、變形座標 |
| 外文關鍵詞: | shell element, large displacement analysis, vector form intrinsic finite element (VFIFE), motion analyses, deformation coordinates |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以向量式有限元(Vector Form Intrinsic Finite Element,VFIFE,V-5)以及運動解析作為板殼結構分析之基本理論,發展板殼結構的VFIFE-DKT元素。引用運動解析理論中的概念:點值描述,途徑單元和移動基礎架構,將板殼結構的非線性運動行為,轉為可用材料力學微變形分析概念處理的小變形問題,並在元素層面引入DKT板元與CST薄膜元的分析概念,完成VFIFE-DKT元素的推導。基於運動解析的發展理念,本文著重於板殼結構運動行為的驗證與探討,在動力分析部份,本文提出兩種轉動慣量的計算方式,並以穩定的變形座標選定法則計算板殼結構的小變位振動與自由運動及動力挫屈等問題,其結果皆與文獻結果一致。在靜力問題部份則是提出一套VFIFE板殼元標準的靜力分析程序,算例結果顯示此程序穩定並具有良好的收斂性。而為了驗證板殼轉動慣量的準確性,本文亦完成一薄殼結構大變位實驗之量測與比對,結果顯示本文VFIFE-DKT元素與轉動慣量計算與所得分析實驗結果近似。最終則是依運動解析的理念,提出一個板殼元簡易的開裂分析程序,確保結構系統破壞後能夠成為獨立的運動體,且系統總能在開裂過程不會有額外的損失。
In order to simulate the large displacement of a thin shell structure, a novel shell element based on the vector form intrinsic finite element (VFIFE) method is presented. The motion of the shell structure is characterized by the motions of finite particles. Each particle is subjected to the external forces and internal forces. The motion of each particle satisfies the Law of Mechanics. In addition, three key processes of the VFIFE method such as the point value description, path element and convected material frame are adopted. A fictitious reversed rigid body motion is used to separate the rigid body motion and the deformations of the VFI-DKT element within each path element. The internal forces of the element determined in the deformation coordinate system satisfy the equilibrium equations. Through the numerical analyses of the benchmark structures undergo extremely-large displacements and rotation during motion, this novel shell element of the VFIFE method demonstrates its outstanding accuracy and efficiency.
[1] R. W. Clough and J. L. Tocher, “Finite element stiffness matrices for analysis of plate bending”, Proc. Conf. on Matrix Methods in Structural Mechanics, WPAFB, Ohio, pp. 515-545, 1965.
[2] G. P. Bazeley, Y. K. Cheung, B. M. Irons and O. C. Zienkiewicz, “Triangular elements in plate bendingconforming and non-conforming solutions”, Proc. Conf. on Matrix Methods in Structural Mechanics, WPAFB, Ohio, pp. 547-576, 1965.
[3] R.W. Clough and J.L. Tocher, “Finite element stiffness matrices foranalysis of plate bending”, In Proc. Conf. on Matrix Methods in Structural Mechanics, AFFDL TR 66-80,pp.515–545, 1966.
[4] R. W. Clough and C. A. Felippa, “A refined quadrilateral element for analysis of plate bending”, Proc. Conf. On Matrix Methods in Structural Mechanics, WPAFB, Ohio, pp. 399-440, 1968.
[5] T. Pian, “Element stiffness matrices for prescribed boundary stresses”, Proc. Conf. on Matrix Methods in Structural Mechanics, WPAFB, Ohio, pp. 457-477, 1965.
[6] L. R. Herrmann, “A bending analysis for plates, Proceedings” Proc. Conf. on Matrix Methods in Structural Mechanics, WPAFB, Ohio, pp. 60-80, 1965.
[7] G. Horrigmoe, Finite element instability analysis of free-form shells., Repon No. 77-2, Norwegian Institute of Technology, Univ. of Trondheim. Norway, 1977.
[8] R. Gunderson, W. E. Haisler, J. A. Stricklin and P. R. Tisdale, “A rapidly converging triangular plate element”. AIAA journal, Vol 7(1), pp.180-181, 1969.
[9] J. L. Batoz, K. J. Bathe and L. W. Ho, “A study of three-node triangular plate bending elements”. International Journal for Numerical Methods in Engineering, Vol 15(12), pp. 1771-1812, 1980.
[10] J. L. Batoz, “An explicit formulation for an efficient triangular plate-bending element”. International Journal for Numerical Methods in Engineering, Vol 18(7), pp.1077-1089, 1982.
[11] C. Jeyachandrabose, J. Kirkhope and C. R. Babu, “An alternative explicit formulation for the DKT plate-bending element”. International journal for numerical methods in engineering, Vol 21(7), pp. 1289-1293, 1985.
[12] K. J. Bathe, “Fundamental considerations for the finite element analysis of shell structures”. Computers and Structures, Vol 66(1), pp. 19-36, 1998.
[13] K. J. Bathe, Finite element procedures (Vol. 2, No. 3). Englewood Cliffs: Prentice hall, 1996.
[14] H. Hou-Cheng, “Membrane locking and assumed strain shell elements”. Computers and structures, Vol 27(5), pp. 671-677, 1987.
[15] E. L. Wilson, R. L. Taylor, W. P. Doherty and J. Ghaboussi, “Incompatible displacement models”. Numerical and computer methods in structural mechanics. New York, Academic Press, Inc., 43-57, 1973.
[16] J. C. Simo and M. S. Rifai, “A class of mixed assumed strain methods and the method of incompatible modes”. International Journal for Numerical Methods in Engineering, Vol 29(8), pp. 1595-1638, 1990.
[17] J. C. Simo and F. Armero, “Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes”. International Journal for Numerical Methods in Engineering, Vol 33(7), pp. 1413-144, 1992.
[18] C. H. Hong and Y. H. Kim, “A partial assumed strain formulation for triangular solid shell element”. Finite elements in analysis and design, Vol 38(4), pp. 375-390, 2002.
[19] J. H. Kim and Y. H. Kim, “A three-node C0 ANS element for geometrically non-linear structural analysis”. Computer methods in applied mechanics and engineering, Vol 191(37), pp. 4035-4059,2002.
[20] T. Wenzel and H. Schoop, “A non-linear triangular curved shell element”. Communications in numerical methods in engineering, Vol 20(4), pp. 251-264, 2004.
[21] K. J. Bathe, A. Iosilevich and D. Chapelle, “An evaluation of the MITC shell elements”. Computers and Structures, Vol 75(1), pp. 1-30, 2000.
[22] P. S. Lee and K. J. Bathe, “Development of MITC isotropic triangular shell finite elements”. Computers and structures, Vol 82(11), pp. 945-962, 2004.
[23] E. M. B. Campello, P. M. Pimenta and P. Wriggers, “A triangular finite shell element based on a fully nonlinear shell formulation”. Computational Mechanics, Vol 31(6), pp. 505-518, 2003.
[24] S. Wu, G. Li and T. Belytschko, “A DKT shell element for dynamic large deformation analysis”. Communications in numerical methods in engineering, Vol 21(11), pp. 651-674, 2005.
[25] K. J. Bathe and L. W. Ho, “A simple and effective element for analysis of general shell structures”. Computers and Structures, Vol 13(5), pp. 673-681, 1981.
[26] T. Wenzel and H. Schoop, “A non-linear triangular curved shell element”. Communications in numerical methods in engineering, Vol 20(4), pp. 251-264, 2004.
[27] K. J. Bathe and S. Bolourchi, “A geometric and material nonlinear plate and shell element”. Computers and structures, Vol 11(1), pp. 23-48, 1980.
[28] ANSYS User’s Manual, Theory, Ninth Edition, SAS IP, Inc., 1997.
[29] C. C. Rankin and F. A. Brogan, “An element independent corotational procedure for the treatment of large rotations”. Journal of pressure vessel technology, Vol 108(2), pp. 165-174, 1986.
[30] A. A. Shabana, “Finite element incremental approach and exact rigid body inertia”. Journal of Mechanical Design, Vol 118, pp. 171-178, 1996.
[31] J. M. Battini and C. Pacoste, “On the choice of the linear element for corotational triangular shells”. Computer methods in applied mechanics and engineering, Vol 195(44), pp. 6362-6377, 2006.
[32] P. Norachan, S. Suthasupradit and K. D. Kim, “A co-rotational 8-node degenerated thin-walled element with assumed natural strain and enhanced assumed strain”. Finite Elements in Analysis and Design, Vol 50, pp. 70-85, 2012.
[33] Li, Z., and Vu‐Quoc, L. (2007). An efficient co-rotational formulation for curved triangular shell element. International Journal for Numerical Methods in Engineering, 72(9), 1029-1062.
[34] E. C. Ting, C. Shih and Y. K. Wang, “Fundamentals of a vector form intrinsic finite element: Part I. basic procedure and a plane frame element”. Journal of Mechanics, Vol 20(2), pp. 113-122, 2004.
[35] E. C. Ting, C. Shih and Y. K. Wang, “Fundamentals of a vector form intrinsic finite element: Part II. plane solid elements”. Journal of Mechanics, Vol 20(02), pp. 123-132, 2004.
[36] C. Shih, Y. K. Wang, and E. C. Ting, “Fundamentals of a vector form intrinsic finite element: Part III. Convected material frame and examples”. Journal of Mechanics, Vol 20(02), pp. 133-143,2004.
[37] 丁承先, 王仲宇, 吳東岳, 王仁佐, 莊清鏘, 「運動解析與向量式有限元(2.0 版) 」, 中央大學工學院, 橋梁工程研究中心,民國96年。
[38] J. C. Simo, and L. Vu-Quoc, “On the Dynamics of Flexible Beams Under Large Overall Motions---The Plane Case: Part I”. Journal of Applied Mechanics, Vol 53, pp. 849-854, 1986.
[39] J. C. Simo, and L. Vu-Quoc, “A three-dimensional finite-strain rod model. Part II: Computational aspects”. Computer methods in applied mechanics and engineering, Vol 58(1), pp. 79-116, 1986.
[40] T. Belytschko, B. L. Wong and H. Y. Chiang, “Advances in one-point quadrature shell elements”. Computer Methods in Applied Mechanics and Engineering, Vol 96(1), pp. 93-107, 1992.
[41] A. M. Mikkola and A. A. Shabana, “A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications”. Multibody System Dynamics, Vol 9(3), pp. 283-309, 2003.
[42] D. Kuhl and E. Ramm, “Generalized energy–momentum method for non-linear adaptive shell dynamics”. Computer Methods in Applied Mechanics and Engineering, Vol 178(3), pp. 343-366, 1999.
[43] J. Argyris, M. Papadrakakis and Z. S. Mouroutis, “Nonlinear dynamic analysis of shells with the triangular element TRIC”. Computer Methods in Applied Mechanics and Engineering, Vol 192(26), pp. 3005-3038, 2003.
[44] Y. Başar and Y. Ding, “Finite-rotation shell elements for the analysis of finite-rotation shell problems”. International journal for numerical methods in engineering, Vol 34(1), pp.165-169, 1992.
[45] C. Sansour and F. G. Kollmann, “Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assesment of hybrid stress, hybrid strain and enhanced strain elements”. Computational Mechanics, Vol 24(6), pp. 435-447, 2000.
[46] K. Y. Sze, W. K. Chan and T. H. H. Pian, “An eight-node hybrid‐stress solid-shell element for geometric non-linear analysis of elastic shells”. International Journal for Numerical Methods in Engineering, Vol 55(7), pp. 853-878, 2002.
[47] J. C. Simo, D. D. Fo, and M. S. Rifai, “On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory”. Computer Methods in Applied Mechanics and Engineering, Vol 79(1), pp. 21-70, 1990.
[48] V. Adams and A. Askenazi, Building better products with finite element analysis. Santa Fe, NM: OnWord Press, 1999.
[49] R. Z. Wang, K. C. Tsai and B. Z. Lin, “Extremely large displacement dynamic analysis of elastic–plastic plane frames”. Earthquake Engineering and Structural Dynamics, Vol 40(13), pp.1515-1533, 2011.
[50] T. Y. Wu and E. C. Ting, “Large deflection analysis of 3D membrane structures by a 4-node quadrilateral intrinsic element”. Thin-Walled Structures, Vol 46(3), pp. 261-275, 2008.
[51] G. Zheng, X. Cui, G. Li and S. Wu, “An edge-based smoothed triangle element for non-linear explicit dynamic analysis of shells”. Computational Mechanics, Vol 48(1), pp. 65-80, 2011.
[52] I. Romero and F. Armero, “Numerical integration of the stiff dynamics of geometrically exact shells: an energy-dissipative momentum-conserving scheme”. International journal for numerical methods in engineering, Vol 54(7), pp. 1043-1086, 2002.
[53] G. Zi, and T. Belytschko, “New crack-tip elements for XFEM and applications to cohesive cracks”. International Journal for Numerical Methods in Engineering, Vol 57(15), pp. 2221-2240, 2003.
[54] Abaqus User’s Manual, 6.12 Documentation, 2012.
[55] 李東奇,「向量式有限元時間積分法之研究」,中原大學土木工程研究所,碩士論文, 民國97年。
[56] 賴哲宇,「向量式有限元素法之分散式計算應用於平面構架運動分析」,中原大學土木工程研究所,碩士論文,民國95年。
[57] 王仁佐, 「向量式結構運動分析」,國立中央大學土木工程研究所,博士論文,民國95年。
[58] Wu, T. Y., Wang, R. Z., and Wang, C. Y. (2006). Large deflection analysis of flexible planar frames. Journal of the Chinese Institute of Engineers, 29(4), 593-606.
[59] 陳建霖, 「向量式有限元素法於平面構架彈塑性及斷裂之應用」,中原大學土木工程研究所,碩士論文,民國94年。
[60] 吳思穎, 「向量式剛架有限元於二維結構之大變位與接觸行為分析」, 國立中央大學土木工程研究所,碩士論文,民國94年。
[61] 林明廷, 「二維可變形塊體之向量式運動分析」,國立中央大學土木工程學系,碩士論文,民國94年。
[62] 王國昌, 「混凝土結構之非線性不連續變形分析」, 國立中央大學土木工程研究所,博士論文,民國93年。
[63] 陳柏宏,「運用向量式有限元素法於隔震橋梁之非線性動力分析」 ,國立中央大學土木工程研究所,碩士論文,民國97年。
[64] 蔡宗和, 「向量式有限元固體元素內併入剛架元素之應用研究」,國防大學中正理工學院軍事工程研究所,碩士論文,民國92年。
[65] 鄭凱文, 「三維顆粒介質與變形體互制行為之數值模擬」, 國立中央大學土木工程研究所,碩士論文,民國92年。
[66] 賴建豪, 「向量式有限元素法於平面構架幾何非線性之應用」, 中原大學土木工程研究所,碩士學位論文,民國92年。
[67] 陳世凱, 「向量式有限元素法於空間桁架之應用」,中原大學土木工程研究所,碩士論文, ,民國93年。
[68] 吳政翰, 「三維實體運動模擬與圖形化使用者介面之建立」,中原大學土木工程研究所,碩士論文,民國94年。
[69] T. Y. Wu, C. Y. Wang, C. C. Chuang and E. C. Ting, “Motion analysis of 3D membrane structures by a vector form intrinsic finite element”. Journal of the Chinese Institute of Engineers, Vol 30(6), pp. 961-976, 2007.
[70] 張博彥,「向量式有限元素法—平板元素之發展與應用」,國立中山大學海洋環境及工程學系,博士論文,民國98年。
[71] 鍾沛穎,「向量式有限元素法:薄殼元素之發展與其工程應用」, 國立中山大學海洋環境及工程學系,博士論文,民國99年。
[72] T.Y. Wu and E. C. Ting, “Elastoplastic and Large Deflection Analysis of Shells Using a Vector Form Intrinsic Finite Element”, The 36th National Conference on Theoretical and Applied Mechanics, pp. 16-17, November 2012.
[73] 陳詩宏,「向量式有限元素法於被動結構控制元件模擬之應用」,中原大學土木工程研究所,碩士論文,民國95年。
[74] 陳彥樺,「移動質量與荷載作用下之剛架結構動力行為分析」,國立中央大學土木工程研究所,碩士論文,民國96年。
[75] 劉奕廷,「應用向量式有限元素法於施工階段結構物之模擬」,中原大學土木工程研究所,碩士論文,民國96年。
[76] 蕭程瑞,「向量式有限元於三維構架被動控制之應用」,中原大學土木工程研究所,碩士論文,民國97年。
[77] 吳志軒,「FRP 貼布混凝土構件之數值模擬分析」, 中原大學土木工程研究所,碩士論文,民國97年。
[78] 施柔依,「向量式有限元運用於車軌橋互制數值模擬分析」,國立中央大學土木工程研究所,碩士論文,民國99年。
[79] 丸善, 孫緯翰,「應用向量式有限元素法於撓性機構的運動分析」,臺灣大學機械工程學研究所, "構造力学公式集",民國93年。
[80] 李昆晃,「以向量式有限元素法分析具間隙撓性連桿機構」,臺灣大學機械工程學研究所,碩士論文,民國94年。
[81] 陳仲恩,「運動解析應用於三維機構分析」,臺灣大學機械工程學研究所,碩士論文,民國96年。
[82] 張燕如, 「鋼結構火害反應之向量式有限元素法分析」, 國立成功大學土木工程學系,碩士論文,民國96年。
[83] 魏子凌,「含溫度效應之向量式有限元素法於平面構架運動分析」,中原大學土木工程研究所,碩士論文,民國96年。
[84] 劉君厚,「向量式有限元於平面構架之火害模擬」,中原大學土木工程研究所,碩士論文,民國97年。
[85] 曾國瑋, 「應用向量式有限元於剛架式海域結構物之動力分析」,國立中山大學海洋環境及工程學系研究所,碩士論文,民國96年。
[86] P. Y. Chang, K. W. Tseng, H. H. Lee and P. Y. Chung, “A new vector form of finite element applied to offshore structures”. In 4th International Conference on Advances in Structural Engineering and Mechanics, 2008.
[87] H. C. Chen, “Evaluation of Allman triangular membrane element used in general shell analyses”. Computers and structures, Vol 43(5), pp. 881-887, 1992.