骨板置放與模擬為利用電腦於術前模擬骨板的置放位置,提供醫師術前挑選合適的骨釘骨板等植入物,避免術中的不確定性,一般的模擬放置功能操作上不但繁瑣,且無法辨別過程中骨板有無陷入。本研究之骨板放置功能,以碰撞偵測技術為基礎,開發出便捷和快速的操作方式,不但自動貼附於骨表面和顯示貼附度,且絕無陷入之情況,並搭配PhysiGuide平台發展一長骨術前評估系統。最後驗證不陷入之正確性和貼附精度,再藉由兩個股骨與五個骨盆案例,比較本研究之骨板放置與原本放置方式之操作時間,說明此功能的可行性及廣用性。
Computer assisted implant placement and simulation provides information to aid the choice of the type and size of the implants in preoperative planning. The general implant placement and simulation is not only time consuming, but also insufficient in function. We present a method for implant placement based on a collision detection technique, and develop algorithms for appropriate attachment between the implant and the bone and the evaluation of the attachment. In particular, the proposed method guarantees no penetration between the implant and the bone, which is better than old scheme with rotation and translation algorithms. Finally, we combine the proposed method and PhysiGuide in a 3D medical imaging platform, for the preoperative planning of long bones. To verify the above scheme, two femur cases and five pelvic cases are used to evaluate the feasibility of the proposed method. The test results show that the accuracy and efficiency of the proposed implant placement method meet our design requirement.
[1] M. Levoy, “Display of Surfaces from Volume Data”, IEEE Computer Graphics and Applications, Vol. 8, No. 3, pp. 29-37, 1988.
[2] M. Levoy, “Efficient Ray Tracing of Volume Data”, ACM Transactions on Graphics, Vol. 9, No. 3, pp. 245-261, 1990.
[3] H. Ray, H. Pfister, D. Silver and T. Cook. “Ray-Casting Architectures for Volume Visualization”, IEEE Trans. Visualization and Computer Graphics, Vol. 5, No. 3, pp. 210-223, 1999.
[4] L. Westover, “Interactive Volume Rendering”, Proceedings of the 1989 Chapel Hill Workshop on Volume Visualization, pp. 9-16, 1989.
[5] L. Westover, “Footprint Evaluation for Volume Rendering”, Computer Graphics, Vol. 24, No. 4, pp. 367-376, 1990.
[6] P. Lacroute and M. Levoy, “Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing Transformation”, Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 451-458, 1994.
[7] R. Adams and L. Bischof, "Seeded Region Growing", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, 1994.
[8] S.C. Zhu and A.L. Yuille, “Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multi-band Image Segmentation”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 18, pp. 884-900, 1996.
[9] M. Kass, A. Witkin and D. Terzopoulos, “Snakes: Active Contour Models”, International Journal of Computer Vision, Vol. 14, pp. 321-331, 1988.
[10] L.D. Cohen and I. Cohen, “Finite Element Methods for Active Contour Models and Balloons for 2D and 3D Images”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 15, pp. 1131-1147, 1993.
[11] S. Ganapathy and T.G. Dennehy, “A New General Triangulation Method for Planar Contours”, Proceedings of the 9th Annual Conference on Computer Graphics and Interactive Techniques, Vol. 16, pp. 69-75, 1982.
[12] D. Meyers, “Multiresolution Tiling”, Computer Graphics Forum, Vol. 13, No. 5, pp. 325-340, 1994.
[13] J. Jeong, K. Kim, H. Park, H. Cho and M. Jung, ” B-Spline Surface Approximation to Cross-Sections Using Distance Maps”, International Journal of Advanced Manufacturing Technology, Vol. 15, pp. 876-85, 1999.
[14] W.E. Lorenson and H.E. Cline, ”Marching cubes: A High Resolution 3D Surface Construction Algorithm”, SIGGRAPH '87 Proceedings, pp. 163-169, 1987.
[15] M. Dürst, “Additional Reference to ‘Marching Cube’ ”, Computer Graphics, Vol. 22, pp. 2-3, 1988.
[16] G. Nielson and B. Hamann, “The asymptotic decider: Resolving the Ambiguity in Marching Cubes”, 1991 IEEE Proceedings on Visualization, pp. 83-91, 1991.
[17] D.P. Dobkin and D.G. Kirdpatrick, “A Linear Algorithm for Determining the Separation of Convex Polyhedra”, Journal of Algorithms, Vol. 6, pp. 381-392, 1985.
[18] P.K. Agarwal and M.V. Kreveld, “Intersection Queries for Curved Object”, Proceedings of 7th Annual ACM Symposium on Computational Geometry, pp. 41-50, 1991.
[19] B. Chazelle, “An Optimal Algorithm for Intersecting Three- Dimensional Convex Polyhedra”, Proceedings of 30th annual IEEE Symposium on Foundation Computer Science, pp. 586-591, 1989.
[20] J. Canny, “Collision Detection for Moving Polyhedra” IEEE Transactions on PAMI, pp. 200-209, 1986.
[21] E.G. Gilbert, D.W. Johnson and S.S. Keerthi, “A Fast Procedure for Computing the Distance Between Complex Objects in Three- Dimensional Space”, IEEE Journal on Robotics and Automation, Vol. 4, pp.193-203, 1988,
[22] S. Cameron, “Collision Detection by Four-Dimensional Intersection Testing”, Proceedings of IEEE International Conference on Robotics and Automation, Vol. 6, pp.291-302, 1990.
[23] B. Naylor, J. Amanatidest and W. Thibaul, “Merging BSP Trees Yields Polyhedral Set Operation”, ACM Computer Graphics, Vol. 24, pp.115-124, 1990.
[24] M. Moore and J. Wilhelms, “Collision Detection and Response for Computer Animation”, ACM Computer Graphics, Vol. 22, pp. 289-298, 1998.
[25] I.J. Palmer and R.L. Grimsdale, “Collision Detection for Animation using Sphere-Trees”, Computer Graphics Forum, Vol. 14, pp. 105-116, 1995.
[26] A. Smith, Y. Kitamura, H. Takemura and F. Kishino, “A Simple and Efficient Method for Accurate Collision Detection Among Deformable Polyhedral Objects in Arbitrary Motion”, Proceedings of the Virtual Reality Annual International Symposium (VRAIS'95), pp. 136-145, 1995.
[27] S. Gottschalk, M.C. Lin and D. Manocha, “OBBTree: A Hierarchical Structure for Rapid Interference Detection”, Proceedings of ACM SIGGRAPH'96, pp. 171-180, 1996.
[28] J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K. Zikan, “Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs”, IEEE Transactions on Visualization and Computer Graphics, Vol. 4, pp. 21-36, 1998.
[29] S. Ehmann and M. Lin, “Accelerated Proximity Queries Between Convex Polyhedra By Multi-Level Voronoi Marching”, Intelligent Robots and Systems, Vol. 3, pp. 2101-2106, 2000.
[30] M.C. Lin and J.F. Canny, “A Fast Algorithm for Incremental Distance Calculation”, the Proceedings of IEEE International Conference of Robotics and Automation, pp. 1008-1014, 1991.
[31] J.D. Cohen, M.C. Lin, D. Manocha and M. Ponamgi, “I-COLLIDE: An Interactive and Exact Collision Detection System for Large-Scale Environments”, Proceedings of the Symposium on Interactive 3D Graphics, 1995.
[32] T.C. Hudson, M.C. Lin, J. Cohen, S. Gottschalk and D. Manocha, “V-COLLIDE: Accelerated Collision Detection for VRML”, Proceedings of the Second Symposium on Virtual Reality Modeling Language, pp. 117-ff, 1997.
[33] S.A. Ehmann and M.C. Lin, “Accurate and Fast Proximity Queries Between Polyhedra Using Convex Surface Decomposition”, Computer Graphics Forum, Vol. 20, pp. 500-511, 2001.
[34] G. van den Bergen, “Efficient Collision Detection of Complex Deformable Models using AABB Trees”, Journal of Graphics Tools, Vol. 2, pp. 1-13, 1997.
[35] Orthopaedic Trauma Association, http://www.ota.org/index.html
[36] 鄭麗菁、鄭敦輝、陳建行與賴昆城,醫用解剖學,合記圖書出版社。
[37] Bounding Volume Hierarchies for Collision Detection, http://www.youtube.com/watch?v=nFd9BIcpHX4
[38] 羅賴鈞,醫學影像之三維顯示與骨組織三角網格重建技術探討,國立中央大學碩士論文,2009。
[39] 胡育昇,電腦輔助骨盆骨折術前規劃系統發展,國立中央大學碩士論文,2011。
[40] 俞首安,電腦輔助骨盆骨折術前評估系統發展,國立中央大學碩士論文,2010。
[41] 馮建霖,骨創傷手術術前規劃系統之臨床實驗與應用,國立中央大學碩士論文,2013。
[42] S. Gottschalk, “Separating Axis Theorem”, Technical Report TR96-024, Department of Computer Science, UNC Chapel Hill, 1996.
[43] T. Möller, “A Fast Triangle-Triangle Intersection Test”, Journal of Graphics Tools, Vol. 2, pp. 25-30, 1997.
[44] 許聖函,三角網格資料定位整合與平滑性補洞之研究,國立中央大學碩士論文,2005。
[45] 黃詣超,螺旋轉子三維嚙合模擬與間隙計算方法研究,國立中央大學博士論文,2011。
[46] 施彥佑,骨科手術術前規劃之觸控平台發展,國立中央大學碩士論文,2012。
[47] Y.C. Huang and J.Y. Lai, “A Fast Error Comparison Method for Massive STL Data”, Advances in Engineering Software, Vol. 39, pp. 962-972, 2008.
[48] 裴國獻、張元智,數字骨科學,人民衛生出版社,2009。