| 研究生: |
阮氏雪欣 Nguyen Thi Tuyet Han |
|---|---|
| 論文名稱: |
應用 THMC 軟件模擬含水層-滲透性反應性牆系統中的孔隙度降低 Apply THMC software to simulate the porosity reduction in a permeable reactive barrier-aquifer system |
| 指導教授: |
陳瑞昇
Jui-Sheng Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 滲透性反應牆 (PRB) 、結合零價鐵 (ZVI) 、一種熱-水文-力學-化學 (THMC) 、隙度降低 |
| 外文關鍵詞: | Permeable reactive barrier (PRB), Zero-valent iron (ZVI), Thermal-Hydrology-Mechanical-Chemical (THMC), The porosity reduction |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結合零價鐵 (ZVI) 的滲透性反應牆 (PRB) 是一種用於處理現地地下水污染物的技術。 PRB內部發生的化學反應與礦物的二次沉澱,將導致PRB孔隙度降低。當孔隙率降低時,將改變流徑的方向、停留的時間與分路作用的產生。本研究使用 THMC 軟件(一種熱-水文-力學-化學 (THMC) 多相藕合的數值模型)通過流動建模和 PRB 內發生的化學反應來推估孔隙率降低情況。根據地下水流模型,PRB 中的滲透率高於鄰近的含水層材料,允許水流快速地通過,儘管過程中污染物遭移除,地下水的水文地質特性仍假設維持不變。模型結果表明孔隙率損失在入口面 (0.0138) 最為顯著,隨後在經由PRB 的入口處後下降並穩定在 0.2米。文石、菱鐵礦和氫氧化亞鐵可將孔隙率降低 99% 以上。此模式透過結果進一步說明進入地下水中碳酸氫鹽和硫酸鹽的高、低濃度對於孔隙率降低的影響。其中碳酸氫鹽的濃度對沉澱碳酸鹽礦物的形成則對於孔隙率降低有顯著影響。此外其中反應速率係數也影響孔隙率的下降,像是厭氧鐵腐蝕速率係數對於孔隙度下降呈現高度的敏感性,主要是因為鐵腐蝕影響Fe2+、OH-的形成和Fe(OH)2的沉澱作用。本研究成功透過THMC 模擬在 PRB 中孔隙率的降低,對於預測 PRB 中礦物沉澱造成孔隙率損失時應考慮的因素與分析孔隙率隨時間降低的變化有很大的幫助。
Permeable reactive barrier (PRB) involving zero-valent iron (ZVI) is an in-situ technique for treating groundwater contaminants. Chemical reactions take place inside the PRB, promoting secondary mineral precipitation and leading to a decrease in the porosity of the PRB. When the porosity reduction, flow path reorientation, residence time changes, and bypassing occur. This study used THMC software, a numerical model of Thermal-Hydrology-Mechanical-Chemical (THMC) through multiple phases, to determine porosity reduction through flow modeling and the chemical reactions occurring within the PRB. According to the groundwater flow model, PRB has a permeability higher than the neighbouring aquifer materials, allowing water to pass through quickly and preserving the groundwater's hydrogeology despite removing contaminants. The model result indicates that porosity loss is most significant at the entrance face (0.0138), followed by a fall and stabilization after 0.2 m at the PRB entrance. Aragonite, siderite, and ferrous hydroxide reduce porosity by more than 99%. This model highlights the relative effect of concentration by illustrating porosity losses for the high and low levels of bicarbonate and sulfate in the entering groundwater. The concentration of bicarbonate has a significant impact on the reduced porosity caused by the formation of precipitated carbonate minerals. The rate coefficient also influences porous reduction, while the anaerobic iron corrosion rate coefficient is highly sensitive to porous reduction due to iron corrosion influencing the formation of Fe2+, OH-, and the precipitation of Fe(OH)2. Therefore, this research aims to use THMC to simulate the decrease of porosity in PRB, investigate the factors that should be considered when predicting porosity loss from mineral clogging in PRB and analyze the reduction of porosity over time.
Faisal, A. A., & Abd Ali, Z. T. (2017). Using sewage sludge as a permeable reactive barrier for remediation of groundwater contaminated with lead and phenol. Separation Science and Technology, 52(4), 732-742.
Gavaskar, A. R., Gupta, N., Sass, B., Janosy, R., & OSullivan, D. (1998). Permeable barriers for groundwater remediation. Battelle Press, Columbus, Ohio.
Gillham, R. (1999). In situ remediation of VOC-contaminated groundwater using zero-valent iron: Long-term performance. Contaminated Site Remediation Conference "Challenges Posed by Urban & Industrial Contaminants" Organized by the Centre for Groundwater Studies.
Gu, B., Watson, D. B., Wu, L., Phillips, D. H., White, D. C., & Zhou, J. (2002). Microbiological characteristics in a zero-valent iron reactive barrier. Environmental monitoring and assessment, 77(3), 293-309.
Hunter, K. S., Wang, Y., & Van Cappellen, P. (1998). Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry. Journal of Hydrology, 209(1-4), 53-80.
Kamolpornwijit, W., Liang, L., West, O., Moline, G., & Sullivan, A. (2003). Preferential flow path development and its influence on long-term PRB performance: column study. Journal of Contaminant Hydrology, 66(3-4), 161-178.
Lasaga, A. C. (1998). Kinetic Theory in the Earth Sciences. Princeton Series in Geochemistry. Princeton University Press, Princeton, New Jersey.
Li, L., & Benson, C. H. (2008). Evaluation of Two Strategies to Enhance the Long-Term Hydraulic Performance of Permeable Reactive Barriers, GeoCongress 2008: Geotechnics of Waste Management and Remediation, 587-594.
Li, L., & Benson, C. H. (2010). Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers. Journal of Hazardous materials, 181(1-3), 170-180.
Li, L., Benson, C. H., & Lawson, E. M. (2005). Impact of mineral fouling on hydraulic behavior of permeable reactive barriers. Groundwater, 43(4), 582-596.
Li, L., Benson, C. H., & Lawson, E. M. (2006). Modeling porosity reductions caused by mineral fouling in continuous-wall permeable reactive barriers. Journal of Contaminant Hydrology, 83(1-2), 89-121.
Lichtner, P. C. (1996). Continuum formulation of multicomponent-multiphase reactive transport. Reviews in mineralogy, 34, 1-82.
Lin, H. C. J., Richards, D. R., Yeh, G. T., Cheng, J. R., & Cheng, H. P. (1997). FEMWATER: A Three-Dimensional Finite Element Computer Model for Simulating Density-Dependent Flow and Transport in Variably Saturated Media. Technical Report CHL-97-12. Waterways Experiment Station, U. S. Army Corps of Engineers, Vicksburg, MS 39180-6199.
Mayer, K. U., Blowes, D. W., & Frind, E. O. (2001). Reactive transport modeling of an in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater. Water resources research, 37(12), 3091-3103.
Morrison, S. (2003). Performance evaluation of a permeable reactive barrier using reaction products as tracers. Environmental Science & Technology, 37(10), 2302-2309.
Naidu, R., Bekele, D. N., & Birke, V. (2014). Permeable reactive barriers: cost-effective and sustainable remediation of groundwater. Sustainable Groundwater Remediation, 1, 1-2.
O'Hannesin, S. F., & Gillham, R. W. (1998). Long‐term performance of an in situ "iron wall" for remediation of VOCs. Groundwater, 36(1), 164-170.
Obiri-Nyarko, F., Grajales-Mesa, S. J., & Malina, G. (2014). An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere, 111, 243-259.
Owczarek, J. A. (1964). Fundamental of Gas Dynamics. Scranton, PA: International Textbook Company.
Phillips, D. (2009). Permeable reactive barriers: A sustainable technology for cleaning contaminated groundwater in developing countries. Desalination, 248(1-3), 352-359.
Phillips, D. H., Gu, B., Watson, D. B., Roh, Y., Liang, L., & Lee, S. (2000). Performance evaluation of a zerovalent iron reactive barrier: mineralogical characteristics. Environmental Science & Technology, 34(19), 4169-4176.
Phillips, D. H., Watson, D. B., Roh, Y., & Gu, B. (2003). Mineralogical characteristics and transformations during long‐term operation of a zerovalent iron reactive barrier. Journal of Environmental Quality, 32(6), 2033-2045.
Philp, J. C., & Atlas, R. M. (2005). Bioremediation of contaminated soils and aquifers. Bioremediation: Applied Microbial Solutions for Real‐World Environmental Cleanup, 139-236.
Rathi, B. S., Kumar, P. S., & Show, P.-L. (2021). A review on effective removal of emerging contaminants from aquatic systems: current trends and scope for further research. Journal of Hazardous materials, 409, 124413.
Reardon, E. J. (2005). Zerovalent irons: Styles of corrosion and inorganic control on hydrogen pressure buildup. Environmental Science & Technology, 39(18), 7311-7317.
Richardson, J. P., & Nicklow, J. W. (2002). In situ permeable reactive barriers for groundwater contamination. Soil and Sediment Contamination, 11(2), 241-268.
Rodak, C., Silliman, S. E., & Bolster, D. (2014). Time‐dependent health risk from contaminated groundwater including use of reliability, resilience, and vulnerability as measures. JAWRA Journal of the American Water Resources Association, 50(1), 14-28.
Roehl, K. E., Meggyes, T., Simon, F., & Stewart, D. (2005). Long-term performance of permeable reactive barriers. Gulf Professional Publishing.
Saaltink, M. W., Carrera, J., & Ayora, C. (2001). On the behavior of approaches to simulate reactive transport. Journal of Contaminant Hydrology, 48(3-4), 213-235.
Sarr, D. (2001). Zero-Valent-Iron Permeable Reactive Barriers- How Long Will They Last?. Remediation, 11(2), 1-18.
Schipper, L. A., Robertson, W. D., Gold, A. J., Jaynes, D. B., & Cameron, S. C. (2010). Denitrifying bioreactors-An approach for reducing nitrate loads to receiving waters. Ecological engineering, 36(11), 1532-1543.
Statham, T. M., Mason, L. R., Mumford, K. A., & Stevens, G. W. (2015). The specific reactive surface area of granular zero-valent iron in metal contaminant removal: Column experiments and modelling. Water research, 77, 24-34.
Suhag, R. (2016). Overview of ground water in India. PRS Legislative Research, 9504, 12.
Thiruvenkatachari, R., Vigneswaran, S., & Naidu, R. (2008). Permeable reactive barrier for groundwater remediation. Journal of Industrial and Engineering Chemistry, 14(2), 145-156.
USEPA. (1999). Field applications of in situ remediation technologies: Permeable reactive barriers. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC.
Vardhan, K. H., Kumar, P. S., & Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290, 111197.
Vikesland, P. J., Klausen, J., Zimmermann, H., Roberts, A. L., & Ball, W. P. (2003). Longevity of granular iron in groundwater treatment processes: changes in solute transport properties over time. Journal of Contaminant Hydrology, 64(1-2), 3-33.
Warner, S. D., & Sorel, D. (2003). Ten years of permeable reactive barriers: Lessons learned and future expectations. In ACS Publications.
Wilkin, R. T., & Puls, R. W. (2003). Capstone report on the application, monitoring, and performance of permeable reactive barriers for groundwater remediation: Volume 1: Performance evaluations at two sites. EPA 600-R-03-045a vol. 1. U.S.
Environmental Protection Agency, Cincinnati, Ohio.
Wilkin, R. T., Puls, R. W., & Sewell, G. W. (2002). Long-term performance of permeable reactive barriers using zero-valent iron: An evaluation at two sites. EPA 600-S-02-001, Environmental Research Brief. United States Environmental
Protection Agency, Cincinnati, Ohio.
Wilkin, R. T., Su, C., Ford, R. G., & Paul, C. J. (2005). Chromium-removal processes during groundwater remediation by a zero-valent iron permeable reactive barrier. Environmental Science & Technology, 39(12), 4599-4605.
Yabusaki, S., Cantrell, K., Sass, B., & Steefel, C. (2001). Multicomponent reactive transport in an in situ zero-valent iron cell. Environmental Science & Technology, 35(7), 1493-1503.
Yang, H., Hu, R., Ruppert, H., & Noubactep, C. (2021). Modeling porosity loss in Fe0-based permeable reactive barriers with Faraday's law. Scientific Reports, 11(1), 1-13.
Yeh, G. T., Chang, J. R., Gwo, J. P., Lin, H. C., & Richards, D. R. (1994b). 3DSALT: A three-dimensional finite element model of density-dependent flow and transport through saturated-unsaturated media. Instruction Report HL-94-1. Waterway Experiment Station, U.S. Army Corps of Engineers, Vicksburg, MS.
Yeh, G. T., Cheng, J. R., & Lin, H. C. (1994a). 3DFEMFAT: User's Manual of a 3-Dimensional Finite Element Model of Density Dependent Flow and Transport through Saturated-Unsaturated Media. Technical Report submitted to WES, U.S. Corps of Engineers, Vicksburg, Mississippi. Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802.