| 研究生: |
陳星元 Hsing-Yuan Chen |
|---|---|
| 論文名稱: |
利用鈷/金/鈷結構促進低電阻二矽化鈷生成之研究 Enhanced Growth of Low-Resistivity CoSi2 Thin Film by Co/Au/Co Sandwich Structures |
| 指導教授: |
鄭紹良
Shao-Liang Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 矽化物 |
| 外文關鍵詞: | silicide |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,於(001)Si以及(001)SiGe晶片上鍍製 Co/Au/Co三明治薄膜結構進行二矽化鈷(CoSi2)成長與反應機制之研究,並探討不同熱退火溫度對鈷矽化物生成的影響。
在Co/Au/Co/(001)Si試片上,低電阻的CoSi2成核溫度較一般讓CoSi2成長所需的溫度降低了100-190 ℃,此結果可由傳統成核理論加以說明。此外,由二次離子質譜儀(SIMS)與X光能量散佈光譜儀(EDAX)分析結果顯示,在矽化反應過程中,金原子會自原位置處擴散進入CoSi2層及CoSi2晶界中。與Co/Au/(001)Si試片比較,利用Co/Au/Co/(001)Si結構所成長之CoSi2層,無論在CoSi2薄膜表面或是CoSi2/Si界面處的粗糙度都得到明顯的改善。
而在Co/Au/Co/(001)SiGe試片上,經550 ℃退火後已可生成十分平整的CoSi2薄膜。與一般Co/(001)SiGe試片相較,當有金中間層存在時,CoSi2生成溫度可降低200 ℃以上。由XTEM與EDAX分析的結果顯示在矽化反應過程中,僅有少量鍺偏析於CoSi2/(001)SiGe界面處,金原子則擴散進入CoSi2層及CoSi2晶界中。此外,實驗結果顯示利用Co/Au/Co三明治結構在SiGe晶片上生成之CoSi2薄膜,其薄膜之粗糙度受到明顯改善。
由一連串的實驗結果顯示,未來極有可能將Co/Au/Co三明治結構應用在先進的Si與SiGe元件中,於低溫下生成平整的低電阻CoSi2接觸。
The formation and growth mechanism of cobalt silicides in the Co/Au/Co sandwich thin films on (001)Si and (001)SiGe substrate after different heat treatments have been investigated.
The nucleation temperature of low-resistivity CoSi2 phase in the Co/Au/Co/(001)Si samples was found to be lowered by about 100-190 ℃ compared to what is usually needed for the growth of CoSi2. The results can be explained in the context of the classical nucleation theory. From EDAX and SIMS analysis, the Au atoms were found to diffuse from their original position to disperse in CoSi2 layer and in the grain boundaries during silicidation reactions. In addition, compared with the Co/Au/(001)Si sample, the surface and interfacial roughness of CoSi2 film was effectively improved by using the Co/Au/Co sandwich structure on (001)Si.
In the Co/Au/Co/(001)SiGe samples, an uniform CoSi2 thin film was found to form after annealing at 550 ℃. Compared with the Co/(001)SiGe samples, the present of Au interposing layer was found to decrease the nucleation temperature of CoSi2 by about 200 ℃. From XTEM and EDAX analysis, during silicidation reactions, only a small amount of Ge atoms were found to segregate at the CoSi2/(001)SiGe interface and the Au atoms were found to diffuse into the CoSi2 layer and grain boundaries. In addition, the Co/Au/Co sandwich structure is shown to significantly improve the roughness of CoSi2 thin films grown on SiGe substrate.
These results present the exciting prospect that with appropriate controls, the Co/Au/Co sandwich structure promises to be applicable to the formation of uniform and low-resistivity CoSi2 contacts in advanced Si and SiGe devices at low temperature.
[1] G. E. Moore, “Cramming More Components onto Integrated Circuits”, Electronics 38 (1965)
[2] E. G. Colgan, J. P. Gambino, and Q. Z. Hong, “Formation and Stability of Silicides on Polycrystalline Silicon”, Mater. Sci. Eng. R16 (1996) 43-96.
[3] K. Maex, “Silicides for Integrated Circuits: TiSi2 and CoSi2”, Mater. Sc. Eng. R11 (1993) 53-153.
[4] H. Iwai, T. Ohguro, and S. I. Ohmi, “NiSi Salicide Technology for Scaled CMOS”, Microelectron. Eng. 60 (2002) 157-169.
[5] R. Beyers, and R. Sinclair, “Metastable Phase Formation in Titanium-Silicon Thin Films”, J. Appl. Phys. 57 (1985) 5240-5245.
[6] J. C. Barbour, A. E. M. J. Fischer, and J. F. van der Veen, “The Thin- Film Reaction between Ti and Thermally Grown SiO2”, J. Appl. Phys. 62 (1987) 2582-2584.
[7] T. Ohguro, S. I. Nakamura, M. Koike, T. Morimoto, A. Nishiyama, Y. Ushiku, T. Yoshitomi, M. Ono, M. Saito, and H. Iwai, “Analysis of Resistance Behavior in Ti- and Ni-Salicided Polysilicon Films”, IEEE Trans. Electron Devices 41 (1994) 2305-2317.
[8] R. Beyers, D. Coulman, and P. Merchant, “Titanium Disilicide Formation on Heavily Doped Silicon Substrates”, J. Appl. Phys. 61 (1987) 5110-5117.
[9] J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J. Geiss, “Comparison of Transformation to Low-Resistivity Phase and Agglomeration of TiSi2 and CoSi2”, IEEE Trans. Electron Devices 38 (1991) 262-269.
[10] T. Mogami, H. Wakabayashi, Y. Saito, T. Tatsumi, T. Matsuki, and T. Kunio, “Low-Resistance Self-Aligned Ti-Silicide Technology for Sub-Quarter Micron CMOS Devices”, IEEE Trans. Electron Devices 43 (1996) 932-939.
[11] J. U. Bae, D. K. Sohn, J. S. Park, B. H. Lee, C. H. Han, and J. W. Park, “Effect of Pre-Amorphization of Polycrystalline Silicon on Agglomeration of TiSi2 in Subquarter Micron Si Lines”, J. Appl. Phys. 86 (1999) 4943-4948.
[12] S. L. Cheng, J. J. Jou, L. J. Chen, and B. Y. Tsui, “Formation of C54–TiSi2 in Titanium on Nitrogen-Ion-Implanted (001)Si with a Thin Interposing Mo Layer”, J. Mater. Res. 14 (1999) 2061-2069.
[13] F. d''Heurle, S. Petersson, L. Stolt, and B. Strizker, “Diffusion in Intermetallic Compounds with the CaF2 Structure: A Marker Study of the Formation of NiSi2 Thin Films”, J. Appl. Phys. 53 (1982) 5678-5681.
[14] W. L. Tan, K. L. Pey, S. Y. M. Chooi, J. H. Ye, and T. Osipowicz, “Effect of a Titanium Cap in Reducing Interfacial Oxides in the Formation of Nickel Silicide”, J. Appl. Phys. 91 (2002) 2901-2909.
[15] J. Y. Yew, L. J. Chen, and K. Nakamura, “Epitaxial Growth of NiSi2 on (111)Si inside 0.1-0.6 μm Oxide Openings Prepared by Electron Beam Lithography”, Appl. Phys. Lett. 69 (1996) 999-1001.
[16] C. S. Chang, C. W. Nieh, and L. J. Chen, “Formation of Epitaxial NiSi2 of Single Orientation on (111)Si inside Miniature Size Oxide Openings”, Appl. Phys. Lett. 50 (1987) 259-261.
[17] D. Mangelinck, J. Y. Dai, J. S. Pan, and S. K. Lahiri, “Enhancement of Thermal Stability of NiSi Films on (100)Si and (111)Si by Pt Addition”, Appl. Phys. Lett. 75 (1999) 1736-1738.
[18] R.N. Wang, and J. Y. Feng, “Comparison of the Thermal Stabilities of NiSi Films in Ni/Si, Ni/Pd/Si and Ni/Pt/Si Systems”, J. Phys; Condens. Matter 15 (2003) 1935-1942.
[19] R. T. P. Lee, D. Z. Chi, M. Y. Lai, N. L. Yakovlev, and S. J. Chua, “Effects of Ti Incorporation in Ni on Silicidation Reaction and Structural/Electrical Properties of NiSi”, J. Electrochem. Soc. 151 (2004) G642-G647.
[20] L. W. Cheng, S. L. Cheng, J. Y. Chen, L. J. Chen, and B. Y. Tsui, “Effects of Nitrogen Ion Implantation on the Formation of Nickel Silicide Contacts on Shallow Junctions”, Thin Solid Films 355-356 (1999) 412-416.
[21] A. S. W. Wong, D. Z. Chi, M. Loomans, D. Ma, M. Y. Lai, W. C. Tjiu, S. J. Chua, C. W. Lim and J. E. Greene, “F-Enhanced Morphological and Thermal Stability of NiSi Ffilms on BF2+-Implanted Si(001)”, Appl. Phys. Lett. 81 (2002) 5138-5140.
[22] S. S. Lau, J. W. Mayer, and K. N. Tu, “Interactions in the Co/Si Thin-Film System. I. Kinetics”, J. Appl. Phys. 49 (1978) 4005-4010.
[23] W. Lur and L. J. Chen, “Interfacial Reactions of Cobalt Thin Films on BF2+ Ion-Implanted (001)Silicon”, J. Appl. Phys. 64 (1988) 3505-3511.
[24] S. P. Murarka, “Silicide Thin Films and Their Applications in Microelectronics”, Intermetallics 3 (1995) 173-186.
[25] C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, and K. Maex, “CoSi2 Formation through SiO2”, Thin Solid Films 386 (2001) 19-26.
[26] K. Goto, A. Fushida, J. Watanabe, T. Sukegawa, K. Kawamura, T. Yamazaki, and T. Sugii, “Leakage Mechanism and Optimized Conditions of Co Salicide Process for Deep Submicron CMOS Devices”, IEDM Tech. Dig. (1995) 906-909.
[27] R. T. Tung, and F. Schrey, “Increased Uniformity and Thermal Stability of CoSi2 Thin Films by Ti Capping”, Appl. Phys. Lett. 67 (1995) 2164-2166.
[28] T. Masuda, K. Ohhata, N. Shiramizu, E. Ohue, K. Oda, R. Hayami, H. Shimamoto, M. Kondo, T. Harada, and K. Washio, “SiGe-HBT-Based 54-Gb/s 4:1 Multiplexer IC With Full-Rate Clock for Serial Communication Systems”, IEEE J. Solid-State Circuits 40 (2005) 791-795.
[29] T. O. Dickson, R. Beerkens, S. P. Voinigescu, “A 2.5-V 45-Gb/s Decision Circuit Using SiGe BiCMOS Logic”, IEEE J. Solid-State Circuits 40 (2005) 994-1003.
[30] D. B. Aldrich, Y. L. Chen, D. E. Sayers, R. J. Nemanich, S. P. Ashburn, and M. C. Öztürk, “Stability of C54 Titanium Germanosilicide on a Silicon-Germanium Alloy Substrate”, J. Appl. Phys. 77 (1995) 5107-5114.
[31] Y. W. Ok, S. H. Kim, Y. J. Song, K. H. Shim, and T. Y. Seong, “Structural Properties of Nickel Silicided Si1−xGex(001) Layers”, Semicond. Sci. Technol. 19 (2004) 285-290.
[32] P. T. Goeller, B. I. Boyanov, D. E. Sayers, R. J. Nemanich, A. F. Myers, and E. B. Steel, “Germanium Segregation in the Co/SiGe/Si(001) Thin Film System”, J. Mater. Res. 14 (1999) 4372-4384.
[33] R. A. Donaton, S. Kolodinsky, M. Caymax, P. Roussel, H. Bender, B. Brijs, and K. Maex, “Formation of CoSi2 on Strained Si0.8Ge0.2 Using a Sacrificial Si Layer”, Appl. Surf. Sci. 91 (1995) 77-81.
[34] W. W. Wu, S. L. Cheng, S. W. Lee, and L. J. Chen, “Enhanced Growth of Low-Resistivity NiSi on Epitaxial Si0.7Ge0.3 on (001)Si with a Sacrificial Amorphous Si Interlayer”, J. Vac. Sci. Technol. B 21 (2003) 2147-2150.
[35] P. T. Goeller, B. I. Boyanov, D. E. Sayers, and R. J. Nemanich, “Co-Deposition of Cobalt Disilicide on Silicon-Germanium Thin Films”, Thin Solid Film 320 (1998) 206-210.
[36] F. M. d’Heurle and C. S. Petersson, “Formation of Thin Films of CoSi2: Nucleation and Diffusion Mechanisms”, Thin Solid Films 128 (1985) 283-297.
[37] C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, K. Maex, H. Bender, B. Brijs, and W. Vandervorst, “Formation of Epitaxial CoSi2 by a Cr or Mo Interlayer: Comparison with a Ti Interlayer”, J. Appl. Phys. 89 (2001) 2146-2150.
[38] R. Pretorius, M. -C. Chen, and H. A. Ras, “CoSi2 Growth: Kinetics, Phase Sequence and Mechanism”, Mater. Lett. 3 (1985) 282-286.
[39] T. H. Hou, T. F. Lei, and T. S. Chao, “Improvement of Junction Leakage of Nickel Silicided Junction by a Ti-Capping Layer”, IEEE Electron Device Lett. 20 (1999) 572-573.
[40] C. Detavernier, R. L. Van Meirhaeghe, W. Vandervorst, and K. Maex, “Influence of Processing Conditions on CoSi2 Formation in the Presence of a Ti Capping Layer”, Microelectron. Eng. 71 (2004) 252-261.
[41] D. Mangelinck, P. Gas, A. Grob, B. Pichaud, and O. Thomas, “Formation of Ni Silicide from Ni(Au) Films on (111)Si”, J. Appl. Phys. 79 (1996) 4078-4086.
[42] T. Hashimoto, H. Inui, K. Tanaka, and M. Yamaguchi, “Reduction of the C49→C54 Phase Transformation Temperature in Co-Sputtered TiSi2 Thin Films by Ternary Alloying”, Intermetallics 11 (2003) 417-424.
[43] C. Cabral, Jr., L. A. Clevenger, J. M. E. Harper, F. M. d’Heurle, R. A. Roy, C. Lavoie, K. L. Saenger, G. L. Miles, R. W. Mann, and J. S. Nakos, “Low Temperature Formation of C54–TiSi2 Using Titanium Alloys”, Appl. Phys. Lett. 71 (1997) 3531-3533.
[44] C. A. Chang, and J. S. Song, “Selectively Enhanced Silicide Formation by a Gold Interlayer: Probing the Dominant Diffusing Species and Reaction Mechanisms during Thin-Films Reactions”, Appl. Phys. Lett. 51 (1987) 572-574.
[45] C. Detavernier, T. R. L. Van Meirhaeghe, F. Cardon, and K. Maex, “CoSi2 Nucleation in the Presence of Ge”, Thin Solid Films 384 (2001) 243-250.
[46] Y. S. Li, P. S. Lee, and K. L. Pey, “Effects of Ti/Co and Co/Ti Systems on the Germanosilicidation of Poly-Si Capped Poly-Si1-xGex Substrate”, Thin Solid Films 462-463 (2004) 209-212.
[47] J. F. Chang, T. F. Young, Y. L. Yang, H. Y. Ueng, and T. C. Chang, “Silicide Formation of Au Thin Films on (100)Si during Annealing”, Mater. Chem. Phys. 83 (2004) 199-203.
[48] C. R. Chen, and L. J. Chen, “Structural Evolution and Atomic Structure of Ultrahigh Vacuum Deposited Au Thin Films on Silicon at Low Temperatures”, Appl. Surf. Sci. 92 (1996) 507-512.
[49] F. M. d’Heurle, and P. Gas, “Kinetics of Formation of Silicides: A Review”, J. Mater. Res. 1 (1986) 205-221.
[50] C. Detavernier, R. L. Van Meirhaeghe, and F. Cardon, “Influence of Mixing Entropy on the Nucleation of CoSi2”, Phys. Rev. B 62 (2000) 12054-12051.
[51] C. Detavernier, X. P. Qu, R. L. Van Meirhaeghe, B. Z. Li, and K. Maex, “Mixing Entropy and the Nucleation of Silicides: Ni-Pd-Si and Co-Mn-Si Ternary Systems”, J. Mater. Res. 18 (2003) 1668-1678.
[52] L. S. Hung, L. R. Zheng, and J. W. Mayer, “Influence of Au as an Impurity in Ni-Silicide Growth”, J. Appl. Phys. 54 (1983) 792-795.
[53] A. Vantomme, S. Degroote, J. Dekoster, G. Langouche, and R. Pretorius, “Concentration-Controlled Phase Selection of Silicide Formation during Reactive Deposition”, Appl. Phys. Lett. 74 (1999) 3137-3139.
[54] C. Detavernier, C. Lavoie, and R. L. Van Meirhaeghe, “CoSi2 Formation in the Presence of Ti, Ta or W”, Thin Solid Films 468 (2004) 174-182.
[55] C. Detavernier, C. Lavoie, F. M. d’Heurle, H. Bender, and R. L. Van Meirhaeghe, “Low-Temperature Formation of CoSi2 in the Presence of Au”, J. Appl. Phys. 95 (2004) 5340-5346.
[56] J. W. Jang, S. Hayes, J. K Lin, and D. R. Frear, “Interfacial Reaction of Eutectic AuSi Solder with Si(001) and Si(111) Surfaces”, J. Appl. Phys. 95 (2004) 6077-6081.
[57] J. Y. Yew, L. J. Chen, and W. F. Wu, “Effects of Lateral Confinement on the Growth of CoSi and CoSi2 on (001)Si inside 0.2-2 μm Oxide Openings Prepared by Electron Beam Lithography”, Mater. Chem. Phys. 61 (1999) 42-45.
[58] J. Y. Yew, L. J. Chen, and W. F. Wu, “Formation and Growth of CoSi2 on (001)Si inside 0.2-2 μm Oxide Openings Prepared by Electron-Beam Lithography”, J. Vac. Sci. Technol. B 17 (1999) 939-944.