| 研究生: |
楊鎧輿 Kai-Yu Yang |
|---|---|
| 論文名稱: |
金屬氧化物與硫化物異質結構薄膜之電化學研究 Photoelectrochemical studies of metal oxide/metal sulfide heterostructure thin film |
| 指導教授: |
李岱洲
Tai-Chou Lee |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 異質結構 、半導體 、薄膜光觸媒 、產氫 、電化學分析 |
| 外文關鍵詞: | Heterogeneous structure, Semiconductor, Thin film photocatalyst, Hydrogen production, Electrochemical analysis |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們利用噴塗沉積法製作ZnO/Cu-In-Zn-S及CIS/ITO p-n junction兩種不同的異質結構薄膜。第一部分的研究中,我們提出利用噴塗法製作複合薄膜的方式,將不同重量的Cu-In-Zn-S (CIZS)粉體與不同體積的ZnO混合,以此製作出各種不同比例的複合式薄膜,並用在光電化學水分解產氫的實驗中。CIZS在此被當作吸光材料,而ZnO作為電荷傳輸的路徑,在後續的電化學實驗中,我們發現CIZS粉體的分布對於PEC活性有相當大的影響,使用小顆粒的CIZS粉體時(0.56 μm),可獲得較高的光電流密度,且在連續5小時的產氫實驗中可收集到3.27 μmol/ cm2 的產氫量。
後續的電化學實驗中,我們利用電化學阻抗頻譜(EIS)來分析複合薄膜的電荷轉移機制。此外,在複合薄膜外側的ZnO除了當作黏著劑之外,也同時作為複合薄膜的保護層。在所有的PEC實驗中,我們皆使用0.5 M K2SO4作為此實驗的電解質,並未使用犧牲試劑。穩定性測試的實驗中,在外加偏壓0.2 V vs. SCE的條件下,經過一小時的照光實驗後,此複合薄膜仍具有75.67%的反應效率。
第二部分的研究中,我們利用相同的噴塗法並改變前驅物比例,製作出不同性質的Cu-In-S(CIS)薄膜半導體,並利用p-type CIS與不同功函數的n-type ITO製作出CIS/ITO p-n junction薄膜半導體,與單純的CIS p-type薄膜電極相比,效率最高的CIS/ITO p-n junction薄膜電極的光電流密度大約是CIS p-type薄膜電極的兩倍,所以在後續的電化學實驗中,我們也嘗試用不同方法來討論造成其結果的原因。
本研究證明了噴塗法是種簡單且低成本的複合薄膜製作方式,除了可以將粉體噴在各種不同的半導體中,也可以簡單的改變噴塗前驅物的比例來製作不同性質的薄膜半導體。
In this research, we prepared ZnO/Cu-In-Zn-S and CIS/ITO p-n junction heterogeneous structure thin films by using sprayed deposition method.
In the first part, we present a sprayed composite thin film, comprising Cu-In-Zn-S (CIZS) particles embedded in ZnO matrix for photoelectrochemical hydrogen production from water splitting. CIZS, a photoactive semiconductor was used as a photon absorber, whereas ZnO channels as the pathway for charge transfer. It was found that the distribution of the CIZS particles had a direct impact on the PEC activity. A more homogeneous dispersion of smaller CIZS particles (0.56 μm) within ZnO matrix exhibited a higher photocurrent density, and 3.27 μmol/ cm2 hydrogen evolution for 5 h.
Electrochemical impedance spectroscopy (EIS) was employed to analyze the charge transfer mechanism of this composite thin film. In addition, ZnO coating on top of CIZS particles also served as the adhesion and protection layers. All the PEC experiments were performed in 0.5 M K2SO4 electrolyte. No sacrificial reagents were used. The composite electrode was stable under illumination: 75.67% of photo-activity remained after 1 h illumination at a bias of 0.2 V vs. SCE.
In the second part, we changed the ratio of precursor solution to prepare the different type of Cu-In-S (CIS) thin film semiconductors by the same method. In addition, the CIS p-type thin film is combined with ITO of high and low work function to produce CIS/ITO p-n junction thin film semiconductor. The photocurrent density of CIS/ITO p-n junction thin film compare favorably with CIS p-type thin film, and the current density of the most efficient CIS/ITO p-n junction thin film is about twice as much as the CIS p-type thin film. Therefore, we discussed the reason by using different method in the follow-up PEC test.
This study demonstrates a simple and low-cost spray preparation of composite thin film consisting of particles embedded in any semiconductor matrix, and easy to change the ratio of precursor solution to make various thin film semiconductors.
1. International Energy Outlook 2016. http://www.eia.gov/outlooks/ieo/exec_summ.cfm.
2. Allison, I.; Bindoff, N. L.; Bindschadler, R. A.; Cox, P. M.; Noblet, N. d.; England, M. H.; Francis, J. E.; Gruber, N.; Haywood, A. M.; Karoly, D. J.; Kaser, G.; Quéré, C. L.; Lenton, T. M.; Mann, M. E.; McNeil, B. I.; Pitman, A. J.; Rahmstorf, S.; Schellnhuber, H. J.; Schneider, S. H.; Sherwood, S. C.; Somerville, R. C. J.; Steffen, K.; Steig, E. J.; Visbeck, M.; Weaver, A. J. The Copenhagen Diagnosis-Updating the World on the Latest Climate Science; The University of New South Wales Climate Change Research Centre (CCRC): Sydney, Australia, 2009.
3. Beinhocker, E. D.; Oppenheim, J. Climate Change and the Economy-Myths Versus Realities; Davos, Switzerland., 2009.
4. Lewis, N. S.; Crabtree, G. Basic Research Needs for Solar Energy Utilization: Report of the Basic Energy Sciences Workshop on Solar Energy Utilization; US Department of Energy, Office of Basic Energy Science: Washington, DC, 2005.
5. Lewis, N. S.; Nocera, D. G., Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proc. Natl. Acad. Sci. U.S.A. 2006, 103 (43), 15729-15735.
6. Krol, R. V. D.; Gratzel, M., Photoelectrochemical Hydrogen Production. Springer: New York, 2012.
7. Bard, A. J.; Fox, M. A., Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen. Acc. Chem. Res. 1995, 28 (3), 141-145.
8. Balzani, V.; Credi, A.; Venturi, M., Photochemical Conversion of Solar Energy. ChemSusChem 2008, 1 (1-2), 26-58.
9. Alstrum-Acevedo, J. H.; Brennaman, M. K.; Meyer, T. J., Chemical Approaches to Artificial Photosynthesis. 2. Inorg. Chem. 2005, 44 (20), 6802-6827.
10. Osterloh, F. E., Inorganic Materials as Catalysts for Photochemical Splitting of Water. Chem. Mater. 2008, 20 (1), 35-54.
11. Gust, D.; Moore, T. A.; Moore, A. L., Solar Fuels Via Artificial Photosynthesis. Acc. Chem. Res. 2009, 42 (12), 1890-1898.
12. Li, H.; Zhou, Y.; Tu, W.; Ye, J.; Zou, Z., State-of-the-Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance. Adv. Funct. Mater. 2015, 25 (7), 998-1013.
13. Ahmad, H.; Kamarudin, S. K.; Minggu, L. J.; Kassim, M., Hydrogen from Photo-Catalytic Water Splitting Process: A Review. Renew. Sust. Energy Rev. 2015, 43, 599-610.
14. Osterloh, F. E., Inorganic Nanostructures for Photoelectrochemical and Photocatalytic Water Splitting. Chem. Soc. Rev. 2013, 42 (6), 2294-2320.
15. Li, Z.; Luo, W.; Zhang, M.; Feng, J.; Zou, Z., Photoelectrochemical Cells for Solar Hydrogen Production: Current State of Promising Photoelectrodes, Methods to Improve Their Properties, and Outlook. Energy Environ. Sci. 2013, 6 (2), 347-370.
16. Gratzel, M., Photoelectrochemical Cells. Nature 2001, 414 (6861), 338-344.
17. Yang, H. B.; Miao, J.; Hung, S.-F.; Huo, F.; Chen, H. M.; Liu, B., Stable Quantum Dot Photoelectrolysis Cell for Unassisted Visible Light Solar Water Splitting. ACS Nano 2014, 8 (10), 10403-10413.
18. Chen, H. M.; Chen, C. K.; Chang, Y.-C.; Tsai, C.-W.; Liu, R.-S.; Hu, S.-F.; Chang, W.-S.; Chen, K.-H., Quantum Dot Monolayer Sensitized ZnO Nanowire-Array Photoelectrodes: True Efficiency for Water Splitting. Angew. Chem., Int. Ed. 2010, 49 (34), 5966-5969.
19. Li, S.; Zhang, P.; Song, X.; Gao, L., Photoelectrochemical Hydrogen Production of TiO2 Passivated Pt/Si-Nanowire Composite Photocathode. ACS Appl. Mater. Interfaces 2015, 7 (33), 18560-18565.
20. Wang, G.; Yang, X.; Qian, F.; Zhang, J. Z.; Li, Y., Double-Sided Cds and Cdse Quantum Dot Co-Sensitized ZnO Nanowire Arrays for Photoelectrochemical Hydrogen Generation. Nano Lett. 2010, 10 (3), 1088-1092.
21. Yang, X.; Wolcott, A.; Wang, G.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y., Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Lett. 2009, 9 (6), 2331-2336.
22. Warwick, M. E. A.; Kaunisto, K.; Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Sada, C.; Ruoko, T.-P.; Turner, S.; Van Tendeloo, G., Vapor Phase Processing of Α-Fe2O3 Photoelectrodes for Water Splitting: An Insight into the Structure/Property Interplay. ACS Appl. Mater. Interfaces 2015, 7 (16), 8667-8676.
23. Kim, J. Y.; Jang, J.-W.; Youn, D. H.; Magesh, G.; Lee, J. S., Photochemistry: A Stable and Efficient Hematite Photoanode in a Neutral Electrolyte for Solar Water Splitting: Towards Stability Engineering. Adv. Energy Mater. 2014, 4 (13), 1400476.
24. Pacala, S.; Socolow, R., Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies. Science 2004, 305 (5686), 968-972.
25. Iwashina, K.; Iwase, A.; Ng, Y. H.; Amal, R.; Kudo, A., Z-Schematic Water Splitting into H2 and O2 Using Metal Sulfide as a Hydrogen-Evolving Photocatalyst and Reduced Graphene Oxide as a Solid-State Electron Mediator. J. Am. Chem. Soc. 2015, 137 (2), 604-607.
26. Lin, P.-C.; Wang, P.-Y.; Li, Y.-Y.; Hua, C. C.; Lee, T.-C., Enhanced Photocatalytic Hydrogen Production over in-Rich (Ag–In–Zn)S Particles. Int. J. Hydrogen Energy 2013, 38 (20), 8254-8262.
27. Takahashi, T.; Kudo, A.; Kuwabata, S.; Ishikawa, A.; Ishihara, H.; Tsuboi, Y.; Torimoto, T., Plasmon-Enhanced Photoluminescence and Photocatalytic Activities of Visible-Light-Responsive ZnS-AgInS2 Solid Solution Nanoparticles. J. Phys. Chem. C 2013, 117 (6), 2511-2520.
28. Amirav, L.; Alivisatos, A. P., Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures. J. Phys. Chem. Lett. 2010, 1 (7), 1051-1054.
29. Wu, C.-C.; Cho, H.-F.; Chang, W.-S.; Lee, T.-C., A Simple and Environmentally Friendly Method of Preparing Sulfide Photocatalyst. Chem. Eng. Sci. 2010, 65 (1), 141-147.
30. Tsuji, I.; Shimodaira, Y.; Kato, H.; Kobayashi, H.; Kudo, A., Novel Stannite-Type Complex Sulfide Photocatalysts Ai2-Zn-Aiv-S4 (Ai = Cu and Ag; Aiv = Sn and Ge) for Hydrogen Evolution under Visible-Light Irradiation. Chem. Mater. 2010, 22 (4), 1402-1409.
31. Muruganandham, M.; Kusumoto, Y., Synthesis of N, C Codoped Hierarchical Porous Microsphere ZnS as a Visible Light-Responsive Photocatalyst. J. Phys. Chem. C 2009, 113 (36), 16144-16150.
32. Kudo, A.; Miseki, Y., Heterogeneous Photocatalyst Materials for Water Splitting. Chem. Soc. Rev. 2009, 38 (1), 253-278.
33. Tsuji, I.; Kato, H.; Kudo, A., Photocatalytic Hydrogen Evolution on ZnS−CuInS2−AgInS2 Solid Solution Photocatalysts with Wide Visible Light Absorption Bands. Chem. Mater. 2006, 18 (7), 1969-1975.
34. Kudo, A., Development of Photocatalyst Materials for Water Splitting. Int. J. Hydrogen Energy 2006, 31 (2), 197-202.
35. Kudo, A., Recent Progress in the Development of Visible Light-Driven Powdered Photocatalysts for Water Splitting. Int. J. Hydrogen Energy 2007, 32 (14), 2673-2678.
36. Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A., Photocatalytic H2 Evolution under Visible-Light Irradiation over Band-Structure-Controlled (CuIn)XZn2(1-X)S2 Solid Solutions. J. Phys. Chem. B 2005, 109 (15), 7323-7329.
37. Tsuji, I.; Kato, H.; Kudo, A., Visible-Light-Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS–CuInS2–AgInS2 Solid-Solution Photocatalyst. Angew. Chem. 2005, 117 (23), 3631-3634.
38. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37-38.
39. Bard, A. J.; Stratmann, M.; Licht, S., Semiconductor Electrodes and Photoelectrochemistry. Wiley-VCH: Weinheim, 2002.
40. Srivastava, V.; Liu, W.; Janke, E. M.; Kamysbayev, V.; Filatov, A. S.; Sun, C.-J.; Lee, B.; Rajh, T.; Schaller, R. D.; Talapin, D. V., Understanding and Curing Structural Defects in Colloidal Gaas Nanocrystals. Nano Lett. 2017.
41. Ullah, A. R.; Gluschke, J. G.; Krogstrup, P.; Sørensen, C. B.; Nygård, J.; Micolich, A. P., Towards Low-Dimensional Hole Systems in Be-Doped Gaas Nanowires. Nanotechnology 2017, 28 (13), 134005.
42. Takeuchi, H.; Sumioka, T.; Nakayama, M., Longitudinal Optical Phonon-Plasmon Coupled Mode in Undoped Gaas/N-Type Gaas Epitaxial Structures Observed by Raman Scattering and Terahertz Time-Domain Spectroscopic Measurements: Difference in Observed Modes and Initial Polarization Effects. IEEE Trans. Terahertz Sci. Technol. 2017, 7 (2), 124-130.
43. Lee, F.-Y.; Yang, K.-Y.; Wang, Y.-C.; Li, C.-H.; Lee, T. R.; Lee, T.-C., Electrochemical Properties of an AgInS2 Photoanode Prepared Using Ultrasonic-Assisted Chemical Bath Deposition. RSC Adv. 2014, 4 (66), 35215-35223.
44. Lai, C.-H.; Chiang, C.-Y.; Lin, P.-C.; Yang, K.-Y.; Hua, C. C.; Lee, T.-C., Surface-Engineered Growth of Agin5s8 Crystals. ACS Appl. Mater. Interfaces 2013, 5 (9), 3530-3540.
45. Hu, S.-Y.; Lee, Y.-C.; Chen, B.-J., Characterization of Calcined CuInS2 Nanocrystals Prepared by Microwave-Assisted Synthesis. J. Alloy. Compd. 2017, 690, 15-20.
46. Li, M.; Zhao, R.; Su, Y.; Hu, J.; Yang, Z.; Zhang, Y., Synthesis of CuInS2 Nanowire Arrays Via Solution Transformation of Cu2S Self-Template for Enhanced Photoelectrochemical Performance. Appl. Catal. B 2017, 203, 715-724.
47. Uosaki, K.; Kita, H., Modern Aspects of Electrochemistry. Springer US: New York, 1986.
48. Trasatti, S., The Absolute Electrode Potential: An Explanatory Note. Pure Appl. Chem. 1984, 58, 955-966.
49. Reiss, H., Photocharacteristics for Electrolyte‐Semiconductor Junctions. J. Electrochem. Soc. 1978, 125 (6), 937-949.
50. Compton, R. G., Electrode Kinetics: Reactions. Elsevier: Amsterdam, 1987.
51. Gabrielli, C. Use and Applications of Electrochemical Impedance Techniques; Schlumberger Technologies, 1990.
52. Scholz, F., Electroanalytical Methods. Springer: Heidelberg, 2002.
53. Brug, G. J.; van den Eeden, A. L. G.; Sluyters-Rehbach, M.; Sluyters, J. H., The Analysis of Electrode Impedances Complicated by the Presence of a Constant Phase Element. J. Electroanal. Chem. 1984, 176 (1), 275-295.
54. Macdonald, R., Impedance Spectroscopy. Wiley: New York, 1987.
55. Metrohm, Electrochemical Impedance Spectroscopy (Eis) Part 4 - Equivalent Circuit Models. 2011.
56. Choi, J.; Kang, N.; Yang, H. Y.; Kim, H. J.; Son, S. U., Colloidal Synthesis of Cubic-Phase Copper Selenide Nanodiscs and Their Optoelectronic Properties. Chem. Mater. 2010, 22 (12), 3586-3588.
57. van der Stam, W.; Akkerman, Q. A.; Ke, X.; van Huis, M. A.; Bals, S.; de Mello Donega, C., Solution-Processable Ultrathin Size- and Shape-Controlled Colloidal Cu2–XS Nanosheets. Chem. Mater. 2015, 27 (1), 283-291.
58. Saldanha, P. L.; Brescia, R.; Prato, M.; Li, H.; Povia, M.; Manna, L.; Lesnyak, V., Generalized One-Pot Synthesis of Copper Sulfide, Selenide-Sulfide, and Telluride-Sulfide Nanoparticles. Chem. Mater. 2014, 26 (3), 1442-1449.
59. Kolny-Olesiak, J.; Weller, H., Synthesis and Application of Colloidal CuInS2 Semiconductor Nanocrystals. ACS Appl. Mater. Interfaces 2013, 5 (23), 12221-12237.
60. Torimoto, T.; Adachi, T.; Okazaki, K.-i.; Sakuraoka, M.; Shibayama, T.; Ohtani, B.; Kudo, A.; Kuwabata, S., Facile Synthesis of ZnS−AgInS2 Solid Solution Nanoparticles for a Color-Adjustable Luminophore. J. Am. Chem. Soc. 2007, 129 (41), 12388-12389.
61. Aldakov, D.; Lefrancois, A.; Reiss, P., Ternary and Quaternary Metal Chalcogenide Nanocrystals: Synthesis, Properties and Applications. Journal of Materials Chemistry C 2013, 1 (24), 3756-3776.
62. Yarema, O.; Bozyigit, D.; Rousseau, I.; Nowack, L.; Yarema, M.; Heiss, W.; Wood, V., Highly Luminescent, Size- and Shape-Tunable Copper Indium Selenide Based Colloidal Nanocrystals. Chem. Mater. 2013, 25 (18), 3753-3757.
63. Ramasamy, K.; Malik, M. A.; Revaprasadu, N.; O’Brien, P., Routes to Nanostructured Inorganic Materials with Potential for Solar Energy Applications. Chem. Mater. 2013, 25 (18), 3551-3569.
64. De Trizio, L.; Prato, M.; Genovese, A.; Casu, A.; Povia, M.; Simonutti, R.; Alcocer, M. J. P.; D’Andrea, C.; Tassone, F.; Manna, L., Strongly Fluorescent Quaternary Cu–In–Zn–S Nanocrystals Prepared from Cu1-XInS2 Nanocrystals by Partial Cation Exchange. Chem. Mater. 2012, 24 (12), 2400-2406.
65. Cheshme khavar, A. H.; Mahjoub, A.; Samghabadi, F. S.; Taghavinia, N., Fabrication of Selenization-Free Superstrate-Type CuInS2 Solar Cells Based on All-Spin-Coated Layers. Mater. Chem. Phys. 2017, 186, 446-455.
66. Gunawan; Haris, A.; Widiyandari, H.; Septina, W.; Ikeda, S., Surface Modifications of Chalcopyrite CuInS2 Thin Films for Photochatodes in Photoelectrochemical Water Splitting under Sunlight Irradiation. IOP Conf. Ser. Mater. Sci. Eng 2017, 172 (1), 012021.
67. Bi, K.; Sui, N.; Wang, Y.; Zhang, L.; Liu, Q.; Tan, M.; Zhang, H., Temperature-Dependent Charge Carrier Dynamics Investigation of Heterostructured Cu2S-In2S3 Nanocrystals Films Using Injected Charge Extraction by Linearly Increasing Voltage. Appl. Phys. Lett. 2017, 110 (8), 083104.
68. Tomai, T.; Yasui, Y.; Watanabe, S.; Nakayasu, Y.; Sang, L.; Sumiya, M.; Momose, T.; Honma, I., Fabrication of Three-Dimensional CuInS2 Solar-Cell Structure Via Supercritical Fluid Processing. The Journal of Supercritical Fluids 2017, 120, Part 2, 448-452.
69. Patra, B. K.; Khilari, S.; Pradhan, D.; Pradhan, N., Hybrid Dot–Disk Au-CuInS2 Nanostructures as Active Photocathode for Efficient Evolution of Hydrogen from Water. Chem. Mater. 2016, 28 (12), 4358-4366.
70. Gabka, G.; Leniarska, K.; Ostrowski, A.; Malinowska, K.; Donten, M.; Bujak, P., Solvent Effect in the Synthesis of Cu–In–S and Cu–In–Se Nanocrystals with Tunable Structure and Composition. Mater. Chem. Phys. 2015, 162, 291-298.
71. Akkerman, Q. A.; Genovese, A.; George, C.; Prato, M.; Moreels, I.; Casu, A.; Marras, S.; Curcio, A.; Scarpellini, A.; Pellegrino, T.; Manna, L.; Lesnyak, V., From Binary Cu2S to Ternary Cu–In–S and Quaternary Cu–In–Zn–S Nanocrystals with Tunable Composition Via Partial Cation Exchange. ACS Nano 2015, 9 (1), 521-531.
72. Néstor, G.; Mathieu, S. P.; Melissa, J.; Xiaoyun, Y.; Wiktor, S. B.; Xavier, A. J.; Pauline, B.; Florian Le, F.; Kevin, S., CuInGaS2 Photocathodes Treated with SbX3 (X = Cl, I): The Effect of the Halide on Solar Water Splitting Performance. J. Phys. D: Appl. Phys. 2017, 50 (4), 044003.
73. Leach, A. D. P.; Macdonald, J. E., Optoelectronic Properties of CuInS2 Nanocrystals and Their Origin. J. Phys. Chem. Lett. 2016, 7 (3), 572-583.
74. Kong, W.; Zhang, B.; Li, R.; Wu, F.; Xu, T.; Wu, H., Plasmon Enhanced Fluorescence from Quaternary Cuinzns Quantum Dots. Appl. Surf. Sci. 2015, 327, 394-399.
75. Tang, X.; Tay, Q.; Chen, Z.; Chen, Y.; Goh, G. K. L.; Xue, J., Cu-in-Zn-S Nanoporous Spheres for Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. New J. Chem. 2013, 37 (7), 1878-1882.
76. Liu, Y.; Huang, F.; Xie, Y.; Cui, H.; Zhao, W.; Yang, C.; Dai, N., Controllable Synthesis of Cu2In2ZnS5 Nano/Microcrystals and Hierarchical Films and Applications in Dye-Sensitized Solar Cells. J. Phys. Chem. C 2013, 117 (20), 10296-10301.
77. Manna, G.; Jana, S.; Bose, R.; Pradhan, N., Mn-Doped Multinary Cizs and Aizs Nanocrystals. J. Phys. Chem. Lett. 2012, 3 (18), 2528-2534.
78. Liu, S.; Xu, H.; Nie, L.; Ren, Y.; Yuan, R., Spray Pyrolysis Deposition of Cu–Zn–In–S Solid-Solution Thin Films with Tunable Compositions and Band Gaps. Mater. Sci. Semicond. Process. 2015, 40, 20-25.
79. Cheng, K.-W.; Huang, C.-M.; Yu, Y.-C.; Li, C.-T.; Shu, C.-K.; Liu, W.-L., Photoelectrochemical Performance of Cu-Doped ZnIn2S4 Electrodes Created Using Chemical Bath Deposition. Sol. Energ. Mater. Sol. Cells 2011, 95 (7), 1940-1948.
80. Cheng, K.-W.; Lee, W.-C.; Fan, M.-S., Photoelectrochemical Performance of Cu–Zn–In–S Film Grown Using One-Step Electrodeposition. Electrochim. Acta 2013, 87, 53-62.
81. Taguchi, T.; Ni, L.; Irie, H., Alkaline-Resistant Titanium Dioxide Thin Film Displaying Visible-Light-Induced Superhydrophilicity Initiated by Interfacial Electron Transfer. Langmuir 2013, 29 (15), 4908-4914.
82. Li, J.-S.; Sang, X.-J.; Chen, W.-L.; Zhang, L.-C.; Zhu, Z.-M.; Ma, T.-Y.; Su, Z.-M.; Wang, E.-B., Enhanced Visible Photovoltaic Response of TiO2 Thin Film with an All-Inorganic Donor–Acceptor Type Polyoxometalate. ACS Appl. Mater. Interfaces 2015, 7 (24), 13714-13721.
83. Venkatasubramanian, A.; Sauer, V. T. K.; Roy, S. K.; Xia, M.; Wishart, D. S.; Hiebert, W. K., Nano-Optomechanical Systems for Gas Chromatography. Nano Lett. 2016, 16 (11), 6975-6981.
84. Watanabe, A.; Watanabe, C.; Freeman, R. R.; Teramae, N.; Ohtani, H., Hydrogenation Reactions During Pyrolysis-Gas Chromatography/Mass Spectrometry Analysis of Polymer Samples Using Hydrogen Carrier Gas. Anal. Chem. 2016, 88 (10), 5462-5468.
85. Imashuku, S.; Imanishi, A.; Kawai, J., Development of Miniaturized Electron Probe X-Ray Microanalyzer. Anal. Chem. 2011, 83 (22), 8363-8365.
86. Bao, Q.; Chen, C.; Wang, D.; Liu, J., Characterization of Hydroxyapatite Films Prepared by Pulsed Laser Deposition. Cryst. Growth Des. 2008, 8 (1), 219-223.
87. Tiwana, P.; Docampo, P.; Johnston, M. B.; Snaith, H. J.; Herz, L. M., Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells. ACS Nano 2011, 5 (6), 5158-5166.
88. Stockwell, D.; Yang, Y.; Huang, J.; Anfuso, C.; Huang, Z.; Lian, T., Comparison of Electron-Transfer Dynamics from Coumarin 343 to TiO2, SnO2, and ZnO Nanocrystalline Thin Films: Role of Interface-Bound Charge-Separated Pairs. J. Phys. Chem. C 2010, 114 (14), 6560-6566.
89. Jiang, J.; Zhang, X.; Sun, P.; Zhang, L., Zno/Bioi Heterostructures: Photoinduced Charge-Transfer Property and Enhanced Visible-Light Photocatalytic Activity. J. Phys. Chem. C 2011, 115 (42), 20555-20564.
90. González, J. C.; Ribeiro, G. M.; Viana, E. R.; Fernandes, P. A.; Salomé, P. M. P.; Gutiérrez, K.; Abelenda, A.; Matinaga, F. M.; Leitão, J. P.; Cunha, A. F. d., Hopping Conduction and Persistent Photoconductivity in Cu2ZnSnS4 Thin Films. J. Phys. D: Appl. Phys. 2013, 46 (15), 155107.
91. Ahmad, I.; Akhtar, M. J.; Younas, M.; Siddique, M.; Hasan, M. M., Small Polaronic Hole Hopping Mechanism and Maxwell-Wagner Relaxation in NdFeO3. J. Appl. Phys. 2012, 112 (7), 074105.
92. Qiao, X.; Chen, J.; Li, X.; Ma, D., Observation of Hole Hopping Via Dopant in MoOx-Doped Organic Semiconductors: Mechanism Analysis and Application for High Performance Organic Light-Emitting Devices. J. Appl. Phys. 2010, 107 (10), 104505.
93. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S., Solar Water Splitting Cells. Chem. Rev. 2010, 110 (11), 6446-6473.
94. McCormick, T. M.; Calitree, B. D.; Orchard, A.; Kraut, N. D.; Bright, F. V.; Detty, M. R.; Eisenberg, R., Reductive Side of Water Splitting in Artificial Photosynthesis: New Homogeneous Photosystems of Great Activity and Mechanistic Insight. J. Am. Chem. Soc. 2010, 132 (44), 15480-15483.
95. Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R., Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting. J. Phys. Chem. Lett. 2010, 1 (17), 2607-2612.
96. Wang, Y.; Wang, Q.; Zhan, X.; Wang, F.; Safdar, M.; He, J., Visible Light Driven Type Ii Heterostructures and Their Enhanced Photocatalysis Properties: A Review. Nanoscale 2013, 5 (18), 8326-8339.
97. Liu, C.; Tang, J.; Chen, H. M.; Liu, B.; Yang, P., A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting. Nano Lett. 2013, 13 (6), 2989-2992.
98. Chen, X.; Shen, S.; Guo, L.; Mao, S. S., Semiconductor-Based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110 (11), 6503-6570.
99. Kapilashrami, M.; Zhang, Y.; Liu, Y.-S.; Hagfeldt, A.; Guo, J., Probing the Optical Property and Electronic Structure of TiO2 Nanomaterials for Renewable Energy Applications. Chem. Rev. 2014, 114 (19), 9662-9707.
100. Kazmerski, L. L.; Sanborn, G. A., Cuins2 Thin‐Film Homojunction Solar Cells. J. Appl. Phys. 1977, 48 (7), 3178-3180.
101. Lewerenz, H. J.; Goslowsky, H.; Husemann, K. D.; Fiechter, S., Efficient Solar Energy Conversion with CuInS2. Nature 1986, 321 (6071), 687-688.
102. Siemer, K.; Klaer, J.; Luck, I.; Bruns, J.; Klenk, R.; Bräunig, D., Efficient CuInS2 Solar Cells from a Rapid Thermal Process (Rtp). Sol. Energ. Mater. Sol. Cells 2001, 67 (1–4), 159-166.
103. Ernst, K.; Belaidi, A.; Könenkamp, R., Solar Cell with Extremely Thin Absorber on Highly Structured Substrate. Semicond. Sci. Technol. 2003, 18 (6), 475.
104. Suryawanshi, M. P.; Agawane, G. L.; Bhosale, S. M.; Shin, S. W.; Patil, P. S.; Kim, J. H.; Moholkar, A. V., Czts Based Thin Film Solar Cells: A Status Review. Materials Technology 2013, 28 (1-2), 98-109.
105. Septina, W.; Kurihara, M.; Ikeda, S.; Nakajima, Y.; Hirano, T.; Kawasaki, Y.; Harada, T.; Matsumura, M., Cu(In,Ga)(S,Se)2 Thin Film Solar Cell with 10.7% Conversion Efficiency Obtained by Selenization of the Na-Doped Spray-Pyrolyzed Sulfide Precursor Film. ACS Appl. Mater. Interfaces 2015, 7 (12), 6472-6479.
106. Faber, H.; Lin, Y.-H.; Thomas, S. R.; Zhao, K.; Pliatsikas, N.; McLachlan, M. A.; Amassian, A.; Patsalas, P. A.; Anthopoulos, T. D., Indium Oxide Thin-Film Transistors Processed at Low Temperature Via Ultrasonic Spray Pyrolysis. ACS Appl. Mater. Interfaces 2015, 7 (1), 782-790.
107. Cheng, K.-W.; Wu, Y.-C.; Hu, Y.-T., Ternary CuInS2 Photoelectrodes Created Using the Sulfurization of Cu–In Metal Precursors for Photoelectrochemical Applications. Mater. Res. Bull. 2013, 48 (7), 2457-2468.
108. Yeh, L.-Y.; Cheng, K.-W., Growth and Characterization of CuInS2 Nanoparticles Prepared Using Sonochemical Synthesis. J. Taiwan Inst. Chem. Eng. 2015, 48, 87-94.
109. Yoshitaka, O.; Arnulf, J.-W.; Yoshio, H.; Kentaro, I., N2O3/ CdS/ CuInS2 Thin-Film Solar Cell with 9.7% Efficiency. Jpn. J. Appl. Phys. 1994, 33 (12B), L1775.
110. Braunger, D.; Hariskos, D.; Walter, T.; Schock, H. W., An 11.4% Efficient Polycrystalline Thin Film Solar Cell Based on CuInS2 with a Cd-Free Buffer Layer. Sol. Energ. Mater. Sol. Cells 1996, 40 (2), 97-102.
111. Krunks, M.; Bijakina, O.; Mikli, V.; Rebane, H.; Varema, T.; Altosaar, M.; Mellikov, E., Sprayed CuInS2 Thin Films for Solar Cells: The Effect of Solution Composition and Post-Deposition Treatments. Sol. Energ. Mater. Sol. Cells 2001, 69 (1), 93-98.
112. Theresa John, T.; Mathew, M.; Sudha Kartha, C.; Vijayakumar, K. P.; Abe, T.; Kashiwaba, Y., CuInS2/In2S3 Thin Film Solar Cell Using Spray Pyrolysis Technique Having 9.5% Efficiency. Sol. Energ. Mater. Sol. Cells 2005, 89 (1), 27-36.
113. Krunks, M.; Bijakina, O.; Varema, T.; Mikli, V.; Mellikov, E., Structural and Optical Properties of Sprayed CuInS2 Films. Thin Solid Films 1999, 338 (1–2), 125-130.
114. Oja, I.; Nanu, M.; Katerski, A.; Krunks, M.; Mere, A.; Raudoja, J.; Goossens, A., Crystal Quality Studies of CuInS2 Films Prepared by Spray Pyrolysis. Thin Solid Films 2005, 480–481, 82-86.
115. Shi, Y.; Jin, Z.; Li, C.; An, H.; Qiu, J., Effect of [Cu]/[in] Ratio on Properties of CuInS2 Thin Films Prepared by Successive Ionic Layer Absorption and Reaction Method. Appl. Surf. Sci. 2006, 252 (10), 3737-3743.
116. Dzhagan, V.; Kempken, B.; Valakh, M.; Parisi, J.; Kolny-Olesiak, J.; Zahn, D. R. T., Probing the Structure of CuInS2-ZnS Core-Shell and Similar Nanocrystals by Raman Spectroscopy. Appl. Surf. Sci. 2017, 395, 24-28.
117. Liu, J.; Li, J.; Jiang, G.; Liu, W.; Zhu, C., Preparation of Perfect Chalcopyrite Ordering CuInS2 Thin Films by High-Temperature Sulfurization of Metal Oxide Nanoparticles. Mater. Lett. 2015, 156, 153-155.
118. Calvo-Barrio, L.; Pérez-Rodrı́guez, A.; Alvarez-Garcia, J.; Romano-Rodrı́guez, A.; Barcones, B.; Morante, J. R.; Siemer, K.; Luck, I.; Klenk, R.; Scheer, R., Combined in-Depth Scanning Auger Microscopy and Raman Scattering Characterisation of CuInS2 Polycrystalline Films. Vacuum 2001, 63 (1–2), 315-321.