跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭啟珩
Chi-Heng Guo
論文名稱: 鈦酸鋇奈米纖維/聚偏氟乙烯 奈米發電機
barium titanate nanofibers/PVDF nanogenerator
指導教授: 蔣孝澈
Shiaw-Tseh Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 75
中文關鍵詞: 鈦酸鋇電紡絲
外文關鍵詞: barium titanate, electrospinning
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文主要在研究利用遠場電紡絲製備不同含量鈦酸鋇奈米纖維(BT) 的BT/PVDF 或BT/P(VDF-TrFE)纖維膜對壓電性能的影響。首先配製BT/PVP的電紡絲溶膠,電紡後將BT/PVP纖維在800oC下煅燒並持溫2小時,以移除PVP而製備出直徑100 nm並具有壓電性的Tetragonal相鈦酸鋇纖維。我們先使用雙氧水將此鈦酸鋇奈米纖維氧化,再以多巴胺進行表面改質。另外也嘗試不經過表面改質,確認是否僅靠黏度即可使其懸浮於PVDF溶膠中,結果發現改質的鈦酸鋇纖維添加量達63 wt%後仍可維持2小時以上的懸浮不沉澱,而不改質的仍能添加至57 wt%,並都電紡成複合壓電纖維膜。將紡出的纖維膜貼上電線和電極後,利用PDMS封裝固化成具有彈性的片材。測量時以自製驅動裝置拍打PDMS使其上下曲折形變產生電位。根據測量的結果,PVDF不論有混鈦酸鋇奈米纖維與否,輸出電性皆和P(VDF-TrFE)差不多。而在添加了63 wt%的鈦酸鋇奈米纖維後,電性都提升了6倍之多。另外,根據王中林教授曾經提出的11項方法來確認奈米發電機能發電是因為壓電性質而非摩擦生電,我們選擇了其中4項進行驗證,並確定電性來源是壓電效果,這顯示出我們所用的遠場電紡絲製備方法,雖然產生的是無方向性的纖維膜,卻仍具有可產生交流電的壓電性質。


    This research was focused on the affects of electrical output by adding various contents of barium titanate (BT) nanofibers of BT/PVDF or BT/P(VDF-TrFE) mats which were synthesized by far-field electrospinning. First, BT/PVP sol for electrospinning was synthesized. After electrospinning, the BT/PVP nanofiers was annealed at 800oC for two hours to remove PVP and produced BT nanofibers with tetragonal phase which is characteristic with piezoelectricity. The BT nanofibers were oxidized by hydrogen peroxide then surface modified with dopamine. Also, we have tried to suspend BT nanofibers by only viscosity in PVDF sol. Consequently, Modified BT fibers can be added up to 63 wt% and suspend at least for 2 hours without precipitation. The pure BT nanofibers can also be added up to 57 wt%. The composite piezoelectric mats were synthesized by electrospinning. Subsequently, the mat was attached two electrodes and electric wires then sealed by PDMS encapsulant which was cured by heating and become a flexible sheet. The PDMS encapsulant was applied a up and down strain by a self-made device and generate electric potential. According to our measurements, no matter the BT nanofibers were added or not, the electrical output of PVDF and P(VDF-TrFE) were almost the same. On the other hand, when the BT nanofibers were added up to 63 wt%, the electric outputs were enhanced by 6 times. On the basis of the 11 methods which can confirm the electric output of a nanogenerator is generated by piezoelectric instead of triboelectric were presented by Prof. Z. L. Wang. Therefore, we have selected and carried out 4 of them, and it can be proved that the electric output is generated by piezoelectric. It is revealed that we utilized the far-field electrospinning method can produce random aligned mats which still can generate alternative current by piezoelectric.

    目錄 中文摘要 I Abstract V 致謝 III 目錄 VI 圖目錄 IX 表目錄 XIVI 第一章、緒論 1 1-1研究背景與動機 1 第二章、文獻回顧 3 2-1 壓電效應 3 2-2 奈米發電機 4 2-2-1壓電奈米發電機 4 2-2-2摩擦生電奈米發電機 8 2-3 製備一維鈦酸鋇的方法 9 2-3-1 熔鹽法 9 2-3-2 水熱法 10 2-3-3 電紡絲法 12 2-4 靜電紡絲 14 2-4-1 電紡原理 14 2-4-2 電紡條件 15 2-4-3 溶液性質 16 2-5鈦酸鋇奈米纖維改質 17 2-6電紡絲製備壓電奈米纖維膜 20 2-6-1 高分子壓電纖維膜 20 2-6-2 複合壓電纖維膜 22 第三章、實驗架構與方法 25 3-1 實驗架構 25 3-2 實驗藥品 26 3-3 合成BT/PVP溶膠 27 3-4 製備BT/PVP奈米纖維 27 3-5 鍛燒BT/PVP奈米纖維 28 3-6 鈦酸鋇奈米纖維改質 28 3-7 製備BT/PVDF複合溶膠 29 3-8 製備BT/PVDF複合壓電纖維膜 29 3-9 PDMS封裝 30 3-10 壓電性質確認 30 3-11 壓電性能測量 31 3-12 分析儀器 31 3-12-1 X-Ray繞射儀 (XRD) 31 3-12-2 場發式電子顯微鏡 (FE-SEM) 32 3-12-3 拉曼光譜儀 (Raman) 32 3-12-4熱重損失分析儀 (TGA) 33 3-12-5 傅立葉紅外光譜儀 (FTIR) 33 3-12-6 振動式黏度計 (Vibro-Viscometer) 33 第四章、結果與討論 34 4-1、確認鈦酸鋇奈米纖維的合成 34 4-2、鈦酸鋇奈米纖維粗細控制 36 4-2-1 加入PVP的影響 36 4-2-2電壓梯度和流量對鈦酸鋇纖維形貌的影響 38 4-3、鈦酸鋇奈米纖維改質 40 4-4、電紡絲製備複合壓電纖維膜 41 4-4-1 增加鈦酸鋇含量和提升黏度對電紡絲以及纖維直徑的影響 42 4-4-2 BT/PVDF比例對β相含量的影響 47 4-5、BT/PVDF複合纖維膜壓電電性測量 50 4-5-1壓電性質確認 51 4-5-2添加鈦酸鋇纖維對奈米發電膜電力輸出的影響 52 4-5-3可穿戴奈米發電膜 55 第五章、結論與展望 56 參考文獻 57

    1. T. Karaki, K. Yan, T. Miyamoto, M Adachi, Lead-Free Piezoelectric Ceramics with Large Dielectric and Piezoelectric Constants Manufactured from BaTiO3 Nano-Powder. Japanese Journal of Applied Physics .46, 97−98 (2007).
    2. L. S. Miller, J. B. Mullin, Electronic Materials: From Silicon to Organics. Springer (1991).
    3. J. Rodel, M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti, BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Applied Physics Reviews .4, 041305 (2017).
    4. X. Cai, T. Lei, D. Sund and L.W. Lin, A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv 7, 15382 (2017).
    5. Z. L.Wang, J Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 14, 242-246 (2006).
    6. M. T. Todaroa, F. Guidoa, V. Mastronardia, D. Desmaelea, G. Epifania, L. Algieria, M. D. Vittorioa, Piezoelectric MEMS vibrational energy harvesters: advances and outlook. Microelectronic Engineering 5, 23–36 (2017)
    7. J. Yan, Y. G. Jeong, High Performance Flexible Piezoelectric Nanogenerators
    based on BaTiO3 Nanofibers in Different Alignment Modes. ACS Appl. Mater.
    Interfaces 8, 15700−15709 (2016).
    8. X. Chen, S. Xu, N. Yao, Y. Shi, 1.6 V Nanogenerator for Mechanical Energy
    Harvesting Using PZT Nanofibers. Nano Lett 10, 2133–2137 (2010).
    9. M. Alexe, S. Senz, M. A. Schubert, D. Hesse, U. Go¨sele, Energy Harvesting
    Using Nanowires? Adv. Mater 20, 4021–4026 (2008).
    10. Z. L. Wang, Energy Harvesting Using Piezoelectric Nanowires–A Correspondence on ‘‘Energy Harvesting UsingNanowires? ‘‘ by Alexe et al. Adv. Mater.20, 1–5 (2008).
    11. F. R. Fana, Z.Q. Tian, Z. L. Wang, Flexible triboelectric generator! Nano Energy 1, 328–334 (2012).
    12. L. Lin, Y. Xie, S. Wang, W. Wu, S. Niu, X. Wen Z. L. Wang, Triboelectric
    Active Sensor Array for Self-Powered Static and Dynamic Pressure Detection
    and Tactile Imaging. ACS Nano 7, 8266–8274 (2013).
    13. S. Wang, Z. L. Wang, Y. Yang, A One-Structure-Based Hybridized
    Nanogenerator for Scavenging Mechanical and Thermal Energies by Triboelectric–Piezoelectric–Pyroelectric Effects. Advanced materials 15, 2881-2887 (2016)
    14. J. Chang. M. Dommer. C. Chang. L.W. Lin, Piezoelectric nanofibers for energy
    scavenging applications Nano Energy 1, 356-371 (2012).
    15. L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo D. Pisignano, Y. Huang, J. A. Roger, High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nature Communications 4, 1633 (2013).
    16. Y. Mao, S. Banerjee, S. S. Wong, Large-Scale Synthesis of ,Single-Crystalline Perovskite Nanostructures. J. Am. Chem. Soc. 125, 15718–15719 (2003).
    17. H. Deng, Y.Qiu and S. Yang, General surfactant-free synthesis of MTiO3 (M ¼ Ba, Sr, Pb) perovskite nanostrips. J. Mater. Chem 19, 976-982 (2009).
    18. B. Li, W. Shang, Z. L. Hu, N. Q. Zhang, Template-free fabrication of pure single-crystalline BaTiO3 nano-wires by molten salt synthesis technique. Ceramics International 40, 73–80 (2014)
    19. N. Bao, L. Shen, G. Srinivasan, K. Yanagisawa, A. Gupta, Shape-Controlled Monocrystalline Ferroelectric Barium Titanate Nanostructures: From Nanotubes and Nanowires to Ordered Nanostructures. J. Phys. Chem. C 112, 8634–8642 (2008).
    20. Z. H. Lin, Y. Yang, J. M. Wu, Y. Liu, F. Zhang, Z. L. Wang, BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators. J. Phys. Chem. Lett. 3, 3599−3604 (2012).
    21. Y.F. Zhu, L. Zhang, T.Natsuki, Y.Q. Fu, Q.Q. Ni, Facile Synthesis of BaTiO3 Nanotubes and Their Microwave Absorption Properties. ACS Appl. Mater. Interfaces 4, 2101−2106 (2012).
    22. F. Maxim, P. Ferreira, P. M. Vilarinho, I. Reaney Hydrothermal Synthesis and Crystal Growth Studies of BaTiO3 Using Ti Nanotube Precursors. Crystal Growth & Design 8, 2008.
    23. T. Yoko, K. Kamiya, K. Tanaka, Preparation of multiple oxide BaTiO3 fibres by the sol-gel method. Journal Of Materials Science 28, 3922-3929 (1990).
    24. J. Yuh, J. C. Nino, W. M. Sigmund, Synthesis of barium titanate (BaTiO3)
    nanofibers via electrospinning. Materials Letters 59, 3645 – 3647 (2005).
    25. B. Sahoo, P. K. Panda, Preparation and characterization of barium titanatenanofibers by electrospinning. Ceramics International 38, 5189–5193 (2012).
    26. H. Li, H. Wu, D. Lin, W. Pan, High Tc in Electrospun BaTiO3 Nanofibers. J. Am. Ceram. Soc 92, 2162–2164 (2009).
    27. F. Wang, Y.W. Mai, D. Wang, R. Ding, W. Shi, High quality barium titanate
    nanofibers for flexible piezoelectric device applications.
    28. N. Bhardwaj, S. C. Kundu, Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances 28, 325–347 (2010).
    29. S. G. Taylor, Disintegration of Water Droplets in an Electric Field. Proceedings of the Royal Society A. 280, 383 (1964).
    30. S. Zargham, S. Bazgir, A. Tavakoli, A.S. Rashidi, R. Damerchely, The Effect of Flow Rate on Morphology and Deposition Area of Electrospun Nylon 6 Nanofiber. Journal of Engineered Fibers and Fabrics 7, 42–49 (2012).
    31. C. Zhang, X. Yuan, L. Wu, Y. Han, J. Sheng, Study on morphology of electrospun poly (vinyl alcohol) mats. Eur Polym J 41, 423–432 (2005).
    32. C. J.Buchko, L. C.Chen, Y.Shen, D. C.Martin, Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40, 7397–7407(1999).
    33. M. Erenciaa , F. Canoa , J.A. Torneroa , M. M. Fernandesb, T. Tzanovb , J.Macanásc , F.Carrilloa, Electrospinning of gelatin fibers using solutions with low acetic acid concentration: effect of solvent composition on both diameter of electrospun fibers and cytotoxicity, Applied Polymer science 132, 2–11 (2015).
    34. X. Zong, ,K. Kim, Fang, S. Ran, B. S. Hsiao, B. Chu, Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43, 4403-4412 (2002)
    35. S. Chuangchote, T. Sagawa, S. Yoshikawa, Electrospinning of Poly(vinyl pyrrolidone): Effects of Solvents on Electrospinnability for the Fabrication of Poly (p-phenylene vinylene) and TiO2Nanofibers. Journal of Applied Polymer Science 114, 2777–2791(2009).
    36. A. Abutaleb, D. Lolla, A.Aljuhani, H.U. Shin, J. W. Rajala, G.G. Chase, Effects of Surfactants on the Morphology and Properties of Electrospun Polyetherimide Fibers. Fibers 5, 33 (2017).
    37. S. Liu, S. Xue, W.Zhang, J. Zhai, Enhanced dielectric and energy storage density induced by surface-modified BaTiO3 nanofibers in poly(vinylidene fluoride) nanocomposites. Ceramics International 40, 15633–15640 (2014).
    38. G. Wang, X. Huang, P. Jiang, Tailoring Dielectric Properties and Energy Density of Ferroelectric Polymer Nanocomposites by High‑k Nanowires. ACS Appl. Mater. Interfaces 7, 18017−18027 (2015).
    39. H. Liu, S. Luo, S.Yu, S Ding, R Sun a, C.P.Wong, Enhanced Dielectric Property and Energy Density of Polydopamine Encapsuled BaTiO3 Nanofibers/PVDF Nanocomposites. 2016 17th International Conference on Electronic Packaging Technology 492−498(2016).
    40. C. C. Li, S. J. Chang, J. T. Leec, W. S. Liao, Efficient hydroxylation of BaTiO3 nanoparticles by using hydrogen peroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects 361, 143–149 (2010).
    41. J. Fang, X. Wang and T. Lin, Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes. J. Mater. Che 21, 11088–11091 (2011).
    42. C. Chang, Y. K. Fuh, L. W. Lin, A DIRECT-WRITE PIEZOELECTRIC PVDF NANOGENERATOR Nano Lett 10, 726–731 (2010).
    43. B. J. Hansen, Y.Liu, R. Yang, Z. L. Wang, Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy. ACS Nano 4, 647–3652 (2010).
    44. J. Kim, J. H. Lee, H. Ryu, J. H. Lee, U. Khan, H. Kim, S. S.Kwak, S. W. Kim,
    High‐Performance Piezoelectric, Pyroelectric, and Triboelectric Nanogenerators Based on P(VDF‐TrFE) with Controlled Crystallinity and Dipole Alignment. Adv. Funct. Mater 27, 1700702 (2017).
    45. K. Shi , B. Sun, X. Huang, P. Jiang, Synergistic effect of graphene nanosheet
    and BaTiO3 nanoparticles onperformance enhancement of electrospun PVDF
    nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy
    52, 153–162 (2018).
    46. J. N. Pereira, V. Sencadas, V.Correia, J. G. Rocha, S. L. Méndez, Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites Sensors and Actuators A: Physical 196, 55–62 (2013).
    47. M. S. S. Bafqi, R. Bagherzadeh, M. Latif, Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency. J Polym Res 22, 130–138 (2015).
    48. X. Lu, H. Qu, M. Skorobogatiy, Piezoelectric Microstructured Fibers via Drawing of Multimaterial Preforms. Scientific Reports 7, (2017).
    49. X. Zhanga, Y. Maa, C. Zhaoa, W. Yanga, High dielectric constant and low dielectric loss hybridnanocomposites fabricated with ferroelectric polymer matrix andBaTiO3nanofibers modified with perfluoroalkylsilane. Applied Surface Science 305, 531–538 (2014).
    50. K. K. Koo, U. Y. Hwang, H. S. Park, Low-Temperature Synthesis of Fully Crystallized Spherical BaTiO3Particles by the Gel–Sol Method. J. Am. Ceram. Soc 87, 2168 –2174 (2004).
    51. W. Jiang, C. Jiang , X. L. Gong, Z. Zhang, Structure and electrorheological
    properties of nanoporous BaTiO3 crystalline powders prepared by sol–gel method. J Sol-Gel Sci Technol 52, 8–14 (2009).
    52. Y. Fan, X. Huang, G. Wang, P. Jiang, Core−Shell Structured
    Biopolymer@BaTiO3 Nanoparticles for Biopolymer Nanocomposites with
    Significantly Enhanced Dielectric Properties and Energy Storage Capability.
    J. Phys. Chem. C 119, 27330−27339 (2015).
    53. A. Salimi, A. A.Yousefi, Analysis Method: FTIR studies of β-phase crystal
    formation in stretched PVDF films. Polymer Testing 22, 699-704 (2003).

    QR CODE
    :::