| 研究生: |
莊凱傑 Kai-Jie Jhuang |
|---|---|
| 論文名稱: |
有限尺寸六方氮化硼奈米帶之熱電特性 |
| 指導教授: |
郭明庭
Ming-Ting Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 30 |
| 中文關鍵詞: | 氮化硼奈米帶 、熱電特性 |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著能源轉型的興起,熱電材料的研究愈發盛行,因為熱電材料可以將能源消耗所產生的廢熱轉換成電能,進而減少對地球的汙染。從過去的研究可以得知,石墨烯奈米帶在熱電材料領域中具有良好的應用潛力。因此,本論文想探討與石墨烯奈米帶晶格結構相似的六方氮化硼奈米帶的熱電特性。首先,我們先利用程式去建構模型後,再去改變尺寸、穿隧率及溫度並觀察電導、席貝克係數、功率因子及熱電優值的變化。我們從結果可以發現六方氮化硼奈米帶不僅聲子熱導較低,熱電參數也是相當穩定,功率因子及熱電優值不會因尺寸改變及環境因素而有劇烈的變化。
In recent years, with the rise of energy transition, research on thermoelectric materials has become increasingly popular. Thermoelectric materials have the ability to convert waste heat generated by energy consumption into electrical energy, thereby reducing pollution to the Earth. Previous research has shown that graphene nanoribbons have great potential in the field of thermoelectric materials. Therefore, this paper aims to research the thermoelectric performance of hexagonal boron nitride nanoribbons, which have a lattice structure similar to graphene nanoribbons. Firstly, we construct models using a program and then vary the dimensions, tunneling rates, and temperatures to observe changes in electrical conductivity, Seebeck coefficient, power factor, and thermoelectric figure of merit. From the results, we find that hexagonal boron nitride nanoribbons not only have lower phonon thermal conductivity but also exhibit stable thermoelectric parameters. The power factor and thermoelectric figure of merit do not undergo drastic changes with variations in dimensions or environmental factors.
[1] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).
[2] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar and P. Yang. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008).
[3] L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373 (2014).
[4] K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414 (2012).
[5] T. C. Harman and J. M. Honig. Thermoelectric and thermomagnetic effects and applications. (McGraw-Hill, New York, 1967).
[6] A.F. Ioffe. Semiconductor thermoelements and thermoelectric cooling. (Infosearch Limited, London, 1957).
[7] D. Pacilé, J. C. Meyer, Ç. Ö. Girit and A. Zettl. The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107 (2008).
[8] O. N. Çelik and N. Ay, Y. Göncü. Effect of nano hexagonal boron nitride lubricant additives on the friction and wear properties of AISI 4140 steel. Particul. Sci. Technol. 31, 501 (2013).
[9] F. Chen, Y. Chen, M. Zhang and J. X. Zhong. Strain effect on transport properties of hexagonal boron–nitride nanoribbons. Chin. Phys. B 19, 086105 (2010).
[10] S. N. Perevislov. Structure, properties, and applications of graphite-like hexagonal boron nitride. Refract. Ind. Ceram. 60, 291 (2019).
[11] W. Q. Han, L. Wu, Y. Zhu, K. Watanabe and T. Taniguchi. Structure of chemically derived mono- and few-atomic-layer boron nitride sheets. Appl. Phys. Lett. 93, 223103 (2008).
[12] J. X. Deng, X. K. Zhang, Q. Yao, X. Y. Wang, G. H. Chan and D. Y. He. Optical properties of hexagonal boron nitride thin films deposited by radio frequency bias magnetron sputtering. Chin. Phys. B 18, 4013 (2009).
[13] C. Klöpfer. Boron nitride - solution for aluminum extrusion. Aluminium-Düsseldorf Then Isernhagen-Aluminium Verlag GMBH, 82(5), 389 (2006).
[14] J. Eichler and C. Lesniak. Boron nitride (BN) and BN composites for high-temperature applications. J. Eur. Ceram. Soc. 28, 1105 (2008).
[15] J. Eichler, K. Uibel and C. Lesniak. Boron nitride (BN) and boron nitride composites for applications under extreme conditions. Adv. Sci. Technol. 65, 61 (2010).
[16] Z. Liu, Y. Gong, W. Zhou, L. Ma, J. Yu, J. C. Idrobo, J. Jung, A. H. MacDonald, R. Vajtai, J. Lou and P. M. Ajayan. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 4, 2541 (2013).
[17] Y. M. Lin and M. S. Dresselhaus. Thermoelectric properties of superlattice nanowires. Phys. Rev. B 68, 075304 (2003).
[18] T. C. Harman, P. J. Taylor, M. P. Walsh and B.E. LaForge. Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229 (2002).
[19] A. Tabarraei. Thermal conductivity of monolayer hexagonal boron nitride nanoribbons. Comput. Mater. Sci. 108, 66 (2015).
[20] H. Haug and A. P. Jauho. Quantum kinetics in transport and optics of semiconductors. (Springer, Heidelberg, 1996).
[21] David M. T. Kuo. Thermoelectric and electron heat rectification properties of quantum dot superlattice nanowire arrays. AIP Advances 10, 045222 (2020).
[22] T. T. Phung, R. Peters. A. Honecker, G. T. de Laissardiere and J. Vahedi. Spin-caloritronic transport in hexagonal graphene nanoflakes. Phys. Rev. B 102, 035160 (2020).
[23] R. S. Chen, G. L. Ding, Y. Zhou and S. T. Han. Fermi-level depinning of 2D transition metal dichalcogenide transistors. J. Mater. Chem. C 9, 11407 (2021).
[24] G. D. Mahan and L. M. Woods. Multilayer thermionic refrigeration. Phys. Rev. Lett. 80, 4016 (1998).