跳到主要內容

簡易檢索 / 詳目顯示

研究生: 戚仲豪
Chung-Hao Chi
論文名稱: 以軟體定義無線電平台設計與實現LTE實體下行鏈路控制通道
Design and Implementation of LTE Physical Downlink Control Channel with SDR Platform
指導教授: 陳逸民
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 84
中文關鍵詞: 軟體定義無線電長期演進技術
外文關鍵詞: LTE, Downlink
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在第四代通訊技術中長期演進技術(Long Term Evolution,LTE)具有重要一席之地,本論文採用的下行傳輸實體層根據3GPP Release 12版定義之標準規格。傳輸的頻譜被分為控制區域(Control region)與數據區域(Data region),控制區域中實體下行控制通道(Physical Downlink Control Channel)乘載下行控制訊息(Downlink Control Information),最重要功能其中之一便是做資源分配,所有使用者必須先解出DCI才有辦法找到自己資料位於數據區域中哪一區塊,從而還原資料。而使用者在收到PDCCH時卻幾乎沒有太多資訊,在這樣的情況下,要進行盲檢(Blind Decoder)。此外本論文會介紹LTE下行鏈路系統其中的所使用正交分頻多工(Orthogonal Frequency Division Multiplexing,OFDM)技術、下行鏈路的規格以及調變原理。
    而本篇論文以軟體定義無線電的方式,實現LTE下行鏈路的發射機。透過搭載實務軟體定義無線電平台,可以實際即時的在特定的頻段發設與接收空中的訊號,也可以改變發射及接收增益來觀察訊號在經過空氣後發生的變化,以及探討訊號的品質評斷系統優劣度等等。


    LTE(Long Term Evolution) plays an important role in fourth generation of mobile phone and mobile communication technonlogy. In this paper, LTE downlink physical layer which is mentioned according to the standard specifications defined by 3GPP Release 12. Transmitted Frequency Spectrum is divided into Control Region and Data Region by different bandwidth. One of the most important application about Downlink Control Information, carried by Physical Downlink Control Channel, is Resource assignment. In order to get the where is data in Data Region, All of Users must demodulate Downlink Control Information , Before receiving data. However, there is not too much information when Users receiving Physical Downlink Control Channel. Blind decoding is applied in this situation. Otherwise, this paper introduces for the LTE downlink system,including the use of OFDM(Orthogonal Frequency Division Multiplexing) technology, specifications and modulation principle, etc.

    In this thesis, we used Software-define-radio to achieve LTE downlink transmitter. By the Software-define-radio platform, we can immediatly transmit and receiver signal in the air on some particular band. Also we can change transmit and receive gain to observe the transformation of the signal in the air, discussion on the quality of the signal and system, etc

    目錄 中文摘要 I ABSTRACT II 謝誌 III 目錄 IV 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1 研究動機與背景 1 1.2 章節提要 2 第二章 長期演進技術下行鏈路系統簡介 3 2.1 正交分頻多工系統介紹 3 2.1.1 正交分頻多工調變原理 3 2.1.2 正交分頻多工調變數學模型 4 2.1.3 保護區間(Guard Interval) 6 2.1.4 正交分頻多重存取系統 7 2.2 長期演進技術結構介紹 8 2.2.1 長期演進技術訊框架構類型 8 2.2.2 資源元素群組 10 2.2.3 實體層細胞識別 11 2.2.4 分頻與分時多工 11 2.2.5 長期演進技術下行通道種類 11 2.2.6 長期演進技術下行訊號種類 12 2.2.7 長期演進技術下行傳輸規格 18 第三章 長期演進技術下行鏈路之傳送與接收 19 3.1 星座圖映射 19 3.2 快速傅立葉轉換(FAST FOURIER TRANSFORM) 22 3.3 符元時序同步(SYMBOL TIMING SYNCHRNIZATION) 23 3.3.1 符元時序偏移討論 24 3.3.2 符元時序同步原理 24 3.4 載波頻濾同步 26 3.4.1 載波頻率誤差之影響 26 3.4.2 載波頻率同步原理 28 3.5 子訊框同步 28 3.5.1 主同步訊號 28 3.5.2 子訊框同步原理 31 3.6 通道估測(CHANNEL ESTIMATION) 32 3.6.1 直接決策通道估測 32 3.6.2 多項式模型化通道估測 35 3.6.3 取樣後維持通道估測 36 第四章 下行控制信息 37 4.1 資源分配區塊(RESOURCE ASSIGNMENT) 37 4.1.1 資源分配區塊Type 0 38 4.1.2 資源分配區塊Type 1 38 4.1.3 資源分配區塊Type 2 40 4.2 調變與編碼策略區塊 41 4.3 下行控制信息 49 4.3.1 下行控制信息類型-1 49 4.3.2 下行控制信息類型-1A 50 第五章 長期演進技術實體下行控制通道 51 5.1 循環冗餘附加碼(CRC ATTACHMENT) 52 5.2 去尾迴旋碼 53 5.3 速率匹配(RATE MATCHING) 53 5.3.1 子區塊交錯器(sub-block interleaver) 54 5.3.2 位元收集與位元選擇及修剪 55 5.4 實體下行控制通道多工(PDCCH MULTIPLEXING) 55 5.4.1 搜索空間(Search Space) 56 5.4.2 多工(Multiplexing) 57 5.5 攪亂器 (SCRAMBLING) 58 5.6 調變(MODULATION) 58 5.7 映射至資源元素 59 5.8 盲檢(BLIND DECODE) 60 第六章 LTE下行鏈路收發機實現 61 6.1 軟體定義無線電 61 6.1.1 軟體定義無線電平台 61 6.1.2 現場可程式化閘陣列 63 6.1.3 RF module(AD9361) 63 6.2 下行鏈路硬體實現 64 6.3 實驗結果 66 結論 69 參考文獻 70

    [1] I.-C. Hsu, “Implementation of lte downlink transceiver with a realistic sdr platform,” National Central University, Master's thesis, 2016.
    [2] C.-W. Chan, “Design and implementation of lte downlink transceiver with fpga,”National Central University, Master's thesis, 2015.
    [3] 3GPP Technical Specification 36.104 version 14.3.0 Release 14, “Base station
    (bs) radio transmission and reception,”
    [4] 3GPP Technical Specification 36.211version 14.3.0 Release 14, “Evolved univer-
    sal terrestrial radio access (e-utra); physical channels and modulation,”
    [5] A. Peled and A. Ruiz, “Frequency domain data transmission using reduced com-
    putational complexity algorithms,”in Acoustics, Speech, and Signal Processing,
    IEEE International Conference on ICASSP'80., vol. 5, pp. 964-967, IEEE, 1980.
    [6] Q. Wang, C. Mehlfuhrer, and M. Rupp, \Carrier frequency synchronization in
    the downlink of 3gpp lte," in 21st Annual IEEE International Symposium on
    Personal, Indoor and Mobile Radio Communications, pp. 939{944, IEEE, 2010.
    [7] X. Yang, Y. Xiong, W. Jia, W. Fang, and X. Zheng, “Pss based time synchro-
    nization for 3gpp lte downlink receivers,”in Communications Technology(ICCT),
    2011 IEEE 13th International Conference on, pp. 930{933, IEEE, 2011.
    [8] Y. Yang, W. Che, N. Yan, X. Tan, and H. Min, “Effcient implementation of pri-
    mary synchronization signal detection in 3gpp lte downlink,” Electronics letters,
    vol. 46, no. 5, pp. 376-377, 2010.
    [9] 3GPP Technical Specification 36.212 version 13.0.0 Release 13, “Evolved univer-
    sal terrestrial radio access (e-utra); multiplexing and channel coding,”
    [10] 3GPP Technical Specification 36.213 version 13.2.0 Release 13, “Evolved univer-
    sal terrestrial radio access (e-utra); Physical layer procedures,”
    [11] 3GPP Technical Specification 36.321 version 12.5.0 Release 12, “Evolved univer-
    sal terrestrial radio access (e-utra); Medium Access Control(MAC) protocol specifi ification,”

    QR CODE
    :::